Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing photovoltaic systems performance under partial shading using an advanced cuckoo search algorithm Benlafkih, Abdessamad; El Moujahid, Yassine; Hadjoudja, Abdelkader; El Harfaoui, Nadia; Said, El-Bot; El Idrissi, Mohamed Chafik
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp845-857

Abstract

Partial shading negatively impacts power output in photovoltaic systems (PVs), causing multiple local maximum power points (LMPP) instead of a single global maximum power point (GMPP). The cuckoo search (CS) technique utilizes the maximum power point tracking (MPPT) technique to extract the global maximum power (GMP) from shaded PVs. CS is a metaheuristic technique that has gained widespread recognition. Moreover, the CS algorithm is associated with several challenges, including a failure rate, long response time, and noticeable oscillations during steady-state operation. To address these limitations, our proposed advanced cuckoo search (ACS) algorithm is designed to overcome the shortcomings of the standard CS algorithm. The algorithm iteratively evaluates individual solar panels and collectively explores the solution space using levy flight operations. Persistent variables are used to store and track the current state and previous iterations. Where the duty cycles of the solar panels are optimally set to enhance the overall power generation efficiency. We also evaluate and analyze the results obtained from the performance of our proposed technique and compare them to the performance of the four most recent CS optimization techniques. for all test cases, the tracking efficiency was improved to 99.98% with a fast-settling time of <44 ms.
Rapid and efficient maximum power point tracking in photovoltaic systems with modified fuzzy logic approach Said, El-bot; Moujahid, Yassine El; Mohamed, Chafik El Idrissi; Benlafkih, Abdessamad
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3621-3631

Abstract

Photovoltaic systems (PVs) often face difficulties in maximizing their output power and maintaining a stable DC-DC connection voltage, especially under variable weather conditions (VWC). The power produced by photovoltaic panels is very sensitive to changes in sunlight and temperature, which vary throughout the day. This paper presents the design of an intelligent controller approach based on modified fuzzy logic (MFLC), adapted to enable the most effective maximum power point tracking (MPPT) of a photovoltaic solar module. The technique reduces delays in MPPT and sustains efficiency despite changing environmental conditions. A DC-DC boost converter is connected to the photovoltaic solar module, which in turn is linked to a load, and computer simulations using MATLAB/Simulink were used to validate the method's effectiveness. Results reveal that the MFLC controller significantly enhances the efficiency of the PVs, achieving improvements of up to 97.05%, with a rapid settling time of less than 10 milliseconds across all test scenarios.