Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advanced particle swarm optimization for efficient and fast global maximum power point tracking under partial shading conditions El Moujahid, Yassine; El Harfaoui, Nadia; Hadjoudja, Abdelkader; Benlafkih, Abdessamad
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3570-3579

Abstract

Partial shading (PS) is a common issue in photovoltaic systems (PVs), and it can significantly reduce the system's output power. This paper presents the advanced particle swarm optimization (APSO) algorithm. APSO is designed to alleviate the challenges posed by PS in PVs in from where of effectiveness and stability speed so that it works to achieve and maintain the global maximum power point (GMPP) under PS conditions. It leverages persistent variables to store and track system states and iterations; it also includes checks to ensure that the duty cycle remains within specified bounds facilitating more effective optimization. Additionally, APSO optimizes solar panel duty cycles and velocities to converge toward an optimal solution to improve overall power generation efficiency and settling time. The results evaluation involves testing the performance of photovoltaic panels under three different shading scenarios and comparative analysis against recent Heuristic-optimization-based GMPP techniques, this study and comparative analyses demonstrate APSO's effectiveness and superiority in terms of high efficiency that reaches 99.85% and fast settling time of GMPP at less than 0.01 second across all test cases. APSO presents a promising solution for maximizing PV power output in the presence of partial shading.
Optimizing photovoltaic systems performance under partial shading using an advanced cuckoo search algorithm Benlafkih, Abdessamad; El Moujahid, Yassine; Hadjoudja, Abdelkader; El Harfaoui, Nadia; Said, El-Bot; El Idrissi, Mohamed Chafik
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp845-857

Abstract

Partial shading negatively impacts power output in photovoltaic systems (PVs), causing multiple local maximum power points (LMPP) instead of a single global maximum power point (GMPP). The cuckoo search (CS) technique utilizes the maximum power point tracking (MPPT) technique to extract the global maximum power (GMP) from shaded PVs. CS is a metaheuristic technique that has gained widespread recognition. Moreover, the CS algorithm is associated with several challenges, including a failure rate, long response time, and noticeable oscillations during steady-state operation. To address these limitations, our proposed advanced cuckoo search (ACS) algorithm is designed to overcome the shortcomings of the standard CS algorithm. The algorithm iteratively evaluates individual solar panels and collectively explores the solution space using levy flight operations. Persistent variables are used to store and track the current state and previous iterations. Where the duty cycles of the solar panels are optimally set to enhance the overall power generation efficiency. We also evaluate and analyze the results obtained from the performance of our proposed technique and compare them to the performance of the four most recent CS optimization techniques. for all test cases, the tracking efficiency was improved to 99.98% with a fast-settling time of <44 ms.