Claim Missing Document
Check
Articles

Found 3 Documents
Search

Development of a Solar System Learning Application Using Markerless Augmented Reality Based on Android Aditya, Bintang; Al Ikhsan, Safaruddin Hidayat; Wulandari, Berlina
Jurnal Informatika Vol 11, No 2 (2024): October
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v11i2.19084

Abstract

The use of technology in learning has opened up new opportunities to create more interesting and effective learning applications. In learning solar system material, especially at elementary school level, the teaching method still uses books, 2D pictures and teaching aids. However, the limitations of teaching aids which can only be used in class and do not allow them to be taken home can create obstacles in the learning process. To overcome these obstacles, innovation is needed in the development of learning media. One solution that can be used is to apply augmented reality technology. In this research, a solar system object learning application was created that applies markerless augmented reality technology. This application can be used as an alternative to using teaching aids in studying solar system objects. The methodology used in this research is the Multimedia Development Life Cycle (MDLC). The development of this augmented reality application was developed using tools Android Studio by implementing ARCore SDK and Sceneform in implementing markerless augmented reality. The results of this research are in the form of an Android-based learning application that applies markerless augmented reality technology and based on field testing, the effectiveness of the application in delivering solar system materials through the quiz feature is 75%, while 85% of users feel satisfied with the visual and ease of use of the application. 
PENINGKATAN BUDAYA LIVING THE HOLY QUR’AN DI DESA KEDUNGOTOK KECAMATAN TEMBELANG Chusbiyah, Nila; Naufal, Crisafa R; Kriswantoro, Kriswantoro; Basyid, Basyid F; Aditya, Bintang; Alif, M F; Kinanta, Yogi P P; Ardiansyah, Nofan; Izza, M Yusril; Wijaya, M Afif Dwi; Satya, Bima P; Dimas, M S
SEMANGGI : Jurnal Pengabdian kepada Masyarakat Vol. 4 No. 1 (2025): April 2025
Publisher : LPPM Universitas Wijaya Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38156/sjpm.v4i1.360

Abstract

Peningkatan intelektualitas dan spiritualitas di era industry 5.0 kiranya sangat penting. Living The Holy Qur'an merupakan suatu upaya untuk membuat seorang hamba lebih dekat dengan penciptanya, Allah SWT. Ada banyak metode yang digunakan dalam Living The Holy Qur’an. Living The Holy Qur’an di desa Kedungotok sendiri menggunakan tiga metode yakni Tahsin Al-Qur’an, ceramah, dan habituasi. Metode Tahsin Qur’an diaplikasikan kepada peserta didik yang ada pada 3 TPQ di desa Kedungotok dengan cara menekankan ketepatan tajwid dalam membaca Al-Qur’an. Adapun metode ceramah dan habituasi diaplikasikan kepada masyarakat desa Kedungotok secara Umum. Metode ceramah dilakukan dengan penyelenggaraan Pengajian umum yang dihadiri warga desa kedungotok, sedangkan metode habituasi dilakukan dengan membagikan dan menempelkan stiker di depan rumah warga. Tiga metode yang telah di lakukan diharapkan mampu meningkatkan budaya Living The Holy Qur’an di desa Kedungotok sehingga prosentase hablun minallah masyarakat sekitar menjadi lebih baik serta sebagai upaya mencetak Generasi Qur’ani menuju Indonesia Emas 2045.
Pendekatan Naive Bayes Campuran untuk Klasifikasi Email Spam dengan Metode Machine Learning Lainnya Aditya, Bintang; Kristy Wijaya, Marchello; Prabowo, Ary
Komputa : Jurnal Ilmiah Komputer dan Informatika Vol 14 No 2 (2025): Komputa : Jurnal Ilmiah Komputer dan Informatika
Publisher : Program Studi Teknik Informatika - Universitas Komputer Indonesia (UNIKOM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputa.v14i2.17166

Abstract

Nowadays, email is a communication media that is often used in the digital era, with various advantages offered by email, accompanied by the rise of email spam which can disrupt the comfort of its users and accessibility on the email service provider platform. Using manual spam filtering techniques has proven to be very time-consuming and labor-intensive, so an alternative technique is needed that can perform sorting automatically using Machine Learning. This research aims to develop a form of spam detection model that uses a mixed Naive Bayes approach that combines various forms of TF-IDF feature representation with various statistical features that can calculate message length, number of capital letters, and various number of links, and compare its performance with various other algorithm approaches consisting of Support Vector Machine, Logistic Regression, and Random Forest, this study uses a public dataset containing examples of 5,572 emails containing important emails and spam emails combined. The evaluation form will be calculated using the metrics Accuracy, Precision, Recall, F1-Score, and Training Time. The results of the experiment explain that Naive Bayes with Mixture is able to produce an accuracy of 96.4% with advantages in calculating computational efficiency, but Random Forest has the highest accuracy level reaching 97.9%. So it shows that this research proves that Naive Bayes with various mixed approaches is worthy of being applied to an Email Spam detection system that requires high speed and efficiency.