Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advancements in electrical systems for E-bike battery charging: a technical examination of conventional and wireless power transfer technologies Bunyamin, Wan Muhamad Hakimi Wan; Baharom, Rahimi; Munim, Wan Noraishah Wan Abdul; Zolkiffly, Mohd Zaid; Ahmad, Ahmad Sukri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i3.pp1617-1632

Abstract

Electric bicycles (E-bikes) are becoming key to making transportation more eco-friendly, leading to cleaner air, and lower carbon emissions. The rising popularity of E-bikes calls for innovative battery charging solutions that cater to their specific needs, emphasizing faster charging, high energy efficiency, safety, compact design, smart features, and compliance with international standards. This paper reviews existing and new charging technologies for E-bikes, focusing on their design, charging processes, and safety features. It points out the issues with traditional chargers, such as their negative effects on power quality and grid stability, and introduces wireless power transfer (WPT) as a groundbreaking approach to E-bike charging. WPT enhances convenience by removing the need for physical cables and is seen as a step forward with the integration of power factor correction techniques for better efficiency and energy use. The discussion extends to the future of E-bike charging, exploring emerging technologies that could redefine electric transportation. The study aims to deepen the understanding of E-bike battery charging technologies, their challenges, and future directions, contributing to the advancement of E-bike technology.
A simulation-based investigation into the bidirectional charge and discharge dynamics in lead-acid batteries Noor Zelan, Muhammad Aiman; Hidayat, Muhammad Nabil; Nik Ali, Nik Hakimi; Umair, Muhammad; Mohd Mawardi, Muhammad Izzul; Ahmad, Ahmad Sukri; Abdullah, Ezmin
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 2: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i2.pp783-796

Abstract

This paper presents a comprehensive simulation-based investigation into the bidirectional charge and discharge dynamics of lead-acid batteries within electric vehicles (EVs) and energy storage systems (ESS). Utilizing a bidirectional DC-DC converter (BDC) integrated with a lead-acid battery, the study explores the performance of these batteries through various charging and discharging scenarios. The simulation model, implemented using MATLAB, assesses the impact of charging strategies on battery behavior, focusing on key metrics such as state of charge (SOC), energy performance, and charging rates. The results reveal that lead-acid batteries, when paired with appropriate charging infrastructure and strategies, demonstrate enhanced performance and reliability in both EV and ESS applications. The study highlights the significant role of BDC topology in facilitating efficient energy transfer and optimizing battery usage. The findings underscore the potential for improved performance and widespread adoption of bidirectional converters in sustainable energy solution.