Claim Missing Document
Check
Articles

Found 9 Documents
Search

Perbandingan Cascade Forward Neural Network dan Feed Forward Neural Network untuk Prediksi Keluaran Daya PV di PLTH Pantai Baru Bantul Mahmudah, Norma; Millah, Ibrahim Saiful; Afandi, Achmad
Techno Bahari Vol 9 No 2 (2022)
Publisher : Politeknik Negeri Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52234/tb.v9i2.214

Abstract

Solar power plants have several advantages, namely continuous production, reduced electricity demand, low maintenance of Photovoltaic (PV) and PV life of more than 30 years, so that the use of solar panels can be optimized by using PV power output predictions. The goal is to determine the PV power output for the future. PV power output prediction can use Artificial Neural Network (ANN). In this study, a comparison was made of PV power output predictions using the Cascade Forward Neural Network (CFNN) and Feed Forward Neural Network (FFNN) using the Levenberg-Marquard Algorithm as the activation function of the PV power output prediction learning process. The magnitude of the error is calculated using the Mean Square Error (MSE). From the results of research using the Cascade Forward Neural Network (CFNN) method with the Levenberg-Marquard algorithm, it is obtained that the MSE results are better at a learning rate of 0.1 with an MSE of 0.0042% while for the Feed Forward Neural network (FFNN) it also uses the Levenberg- Marquard obtained MSE results of 0.007% with a learning rate of 0.05. The research results show that CFNN gives the best MSE value, so that the smallest MSE value is used as a reference in energy management systems to predict PV power output.
Kontrol Temperatur dan Kelembapan pada Ingkubator Bayi Menggunakan Platform Antares Pratama, Kurniawan Maulana; Mahmudah, Norma; Praharsena, Bayu
Techno Bahari Vol 11 No 1 (2024)
Publisher : Politeknik Negeri Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52234/tb.v11i1.255

Abstract

The condition of premature birth is a condition where a baby needs an incubator to maintain the baby's body temperature, because premature babies do not have many weaknesses to regulate body temperature so that they are prone to hypothermia. Setting the temperature and humidity in the baby incubator is an important aspect of caring for premature babies. The use of baby incubators in hospitals requires a high cost of up to Rp. 500,000 per night, even though premature babies need care in an incubator for up to one month, therefore a tool is needed to control humidity and temperature based on the Internet of Things. Control the humidity and temperature of the air used in the patient's home using a microcontroller where the microcontroller will detect the humidity and temperature inside the baby and the temperature measurement results can be viewed via the internet of things which can display temperature and humidity reading data remotely. The results of the comparison between LYNX32 and the platform between the displayed temperature and humidity values have an error of 0%. The Antares platform display displays temperature and humidity data in real time and has historical data that can be downloaded via the Antares platform, making it easier for nurses to monitor conditions.
Rancang Bangung Kotak Penerima Paket Berbasi IoT Arzetti Mee, Venezia; Fardany Faisal, A Labib; Mahmudah, Norma
Techno Bahari Vol 10 No 2 (2023)
Publisher : Politeknik Negeri Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52234/tb.v10i2.260

Abstract

Kotak penerima paket merupakan wadah atau tempat untuk menyimpan pesanan yang bisa kita pesan melalui online store. Kotak penerima paket ini berguna bagi masyarakat,karena memudahkan masyarakat dalam menerima paket, terutama jika kita sedang melakukan aktivitas diluar rumah. Kurir tidak perlu menunggu untuk menyerahkan paket, tanpa kotak penerima paket ini, membuat kurir harus menunggu penerima dan paket  yang dipesan saat diantar dilempar begitu saja, yang mengakibatkan kerusakan pada pesanan kita. Adapun kotak penerima paket yang masih manual, dimana kotak tidak efisien, penggunaan kotak penerima paket yang manual hanya sebagai wadah untuk meletakkan pesanan dan berisiko terjadi pencurian. Rancang bangun alat yang dapat membuat masyarakat tidak resah dan tenang meskipun beraktivitas diluar rumah, ketika ada pesanan paket yang datang. Alat ini menggunakan microcontroller ESP32-Cam yang memperoleh input dari sensor Infrared, dan akan dimonitor oleh telegram. Dengan adanya alat tersebut, memudahkan masyarakat yang melakukan pesanan, paket tidak akan rusak, dan aman, meskipun penerima sedang tidak berada di rumah. Alat penerima paket ini berbasis IoT dimana, kita bisa memantau  pesanan melalui smartphone. Rancang bangun kotak penerima paket dapat berjalan sesuai dengan rancangan penulis, dimana sistem dapat bekerja dengan baik. Sensor Infrared mendeteksi objek kemudian mengirim perintah pada ESP32-cam untuk mengambil gambar dan hasil gambar akan dikirimkan pada telegram untuk notifikasi bahwa terdapat paket yang tiba. Notifikasi muncul pada LCD agar kurir mengetahui bahwa kotak paket akan terbuka atau tidak. Kata kunci : Kotak penerima paket, ESP32-Cam, Berbasis IoT
Studi Persebaran Kontaminan Lindi Dalam Air Tanah di Sekitar Lokasi Tempat Pemrosesan Akhir (TPA) syahriawati, Retno; Mulananda, Arisessy Maharani; Mahmudah, Norma; Sulaeman, Yulia Azizah
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol. 7 No. 1 (2025): JPPL, Maret 2025
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M), Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v7i1.2649

Abstract

The waste in final disposal site that are not managed properly will have an impact the environment and human health. Leachate from rainwater infiltration or waste decomposition can contaminate groundwater due to leachate seepage into the soil. This research aims to determine the pattern of leachate contaminants migration and to predict the leachate contaminant in groundwater from wells of residents living near the landfill over a certain period. The method used is the Domenico analytical solution, where contaminant transport is influenced by advection, dispersion, retardation, and degradation. Source concentration of model simulation from laboratory tests of leachate samples where COD is 4,960 mg/L, hexavalent chromium is 3.5 mg/L, dissolved lead is 0.034 mg/L, and dissolved aluminium is 1.3 mg/L. The distribution pattern of leachate contaminants shows that the distribution of COD contaminants reaches ± 370 m in the longitudinal direction and ± 100 m in the transverse direction, while the distribution pattern of metal contaminants reaches ± 230 m in the longitudinal direction and ± 70 m in the transverse direction. When variations in the operational age of a landfill are 10, 25, and 50 years, the contaminant content of COD, hexavalent chromium, and aluminium exceeds the required quality standard thresholds, while lead is still within the required quality standard thresholds based on PP Nomor 22 Tahun 2021 (Kriteria Mutu Air Kelas II). Keywords: landfill, leachate, groundwater, analytical solution, contaminant transport.
Alat Sortir Telur Ayam Berbasis Multisensor Afandi, Achmad; Fahri, Dimas; Mahmudah, Norma; Wulandari, Apriliya; Furqon, Muhammad; Annaji, Safin
Techno Bahari Vol 12 No 1 (2025): Maret
Publisher : Politeknik Negeri Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52234/tb.v12i1.351

Abstract

Penentuan kualitas telur secara akurat sangat penting dalam industri. Sebuah Iindustri peternakan ayam di wilayah Sidoarjo, Jawa Timur masih dilakukan secara manual menggunakan tenaga manusia yang memiliki banyak kelemahan diantaranya adalah tingkat ketelitian yang rendah, waktu sortir yang lama serta resiko telur terjatuh atau terinjak manusia. Untuk itu penelitian ini merancang mesin sortir telur menggunakan sensor Light Dependent Resistor (LDR) dan sensor load cell. Mesin sortir telur pada penelitian ini menggunakan metode kuantitatif observatif. Telur dikategorikan kedalam telur baik dan buruk. Sensor LDR mendeteksi intensitas cahaya untuk menilai kualitas berdasarkan transparansi cangkang, sedangkan sensor loadc ell juga digunakan mengukur berat telur yang juga menjadi parameter penting dalam proses klasifikasi. Sistem ini menggunakan mikrokontroler untuk mengolah data dari kedua sensor tersebut untuk proses sortasi menjadi kategori baik, busuk, kecil, sedang, dan besar. Hasil dari penelitian ini menunjukkan pembacaan sensor LDR memiliki nilai error sebesar 0,91% dan loadcell sebesar 0,01% sehingga dapat disimpulkan ketelitian proses sortasi telur pada penelitian ini memiliki akurasi yang tinggi.
Solusi Limbah Plastik Tak Terpakai Dengan Pirolisis Modular Untuk Bank Sampah Go Green Desa Banyuanyar, Kabupaten Sampang Millah, Ibrahim saiful; Fardany, A Labib; Mahmudah, Norma; Afandi, Achmad; Apriningwulan, Pusparini
Journal of Social and Community Service Vol. 2 No. 3 (2023): November 2023
Publisher : Faculty of Engineering University of Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jestmc.v2i3.116

Abstract

Plastic has the characteristic of being difficult to decompose. Plastic takes 50 - 200 years to decompose in soil (M, Sugito, & Atmaja, 2018). Waste management in Banyuanyar village, Sampang Regency was initiated by a community movement called Go Green to establish a waste bank. This waste bank recycles organic waste into fertilizer and makes vases from plastic, bags from plastic, chairs from fabric and plastic waste, mats from plastic, and other ornaments which are done on Sundays. Valuable plastics like beverage bottles can be resold for assets. Meanwhile, hard-to-process plastics are usually disposed of in landfills. With the presence of pyrolysis, all waste can be processed by the Go Green community. 2 kg of plastic can produce 380 ml of liquid fuel through pyrolysis.
Studi Persebaran Kontaminan Lindi Dalam Air Tanah di Sekitar Lokasi Tempat Pemrosesan Akhir (TPA) Mulananda, Arisessy Maharani; Mahmudah, Norma; Sulaeman, Yulia Azizah; syahriawati, retno
Jurnal Pengendalian Pencemaran Lingkungan (JPPL) Vol. 7 No. 1 (2025): JPPL, Maret 2025
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M), Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/jppl.v7i1.2649

Abstract

The waste in final disposal site that are not managed properly will have an impact the environment and human health. Leachate from rainwater infiltration or waste decomposition can contaminate groundwater due to leachate seepage into the soil. This research aims to determine the pattern of leachate contaminants migration and to predict the leachate contaminant in groundwater from wells of residents living near the landfill over a certain period. The method used is the Domenico analytical solution, where contaminant transport is influenced by advection, dispersion, retardation, and degradation. Source concentration of model simulation from laboratory tests of leachate samples where COD is 4,960 mg/L, hexavalent chromium is 3.5 mg/L, dissolved lead is 0.034 mg/L, and dissolved aluminium is 1.3 mg/L. The distribution pattern of leachate contaminants shows that the distribution of COD contaminants reaches ± 370 m in the longitudinal direction and ± 100 m in the transverse direction, while the distribution pattern of metal contaminants reaches ± 230 m in the longitudinal direction and ± 70 m in the transverse direction. When variations in the operational age of a landfill are 10, 25, and 50 years, the contaminant content of COD, hexavalent chromium, and aluminium exceeds the required quality standard thresholds, while lead is still within the required quality standard thresholds based on PP Nomor 22 Tahun 2021 (Kriteria Mutu Air Kelas II). Keywords: landfill, leachate, groundwater, analytical solution, contaminant transport.
Pelatihan dasar robot arm untuk meningkatkan minat dan bakat siswa SMA/SMK atau sederajat di Kabupaten Pamekasan Millah, Ibrahim Saiful; Mahmudah, Norma; Faisal, A. Labib Fardany; Afandi, Achmad; Kurdianto, Akhmad Arif; Rohmah, Nurir; Alim, Helmy Sahirul; Mustofa, Ahmad; Prasetyo, Aries Alfian
KACANEGARA Jurnal Pengabdian pada Masyarakat Vol 7, No 4 (2024): November
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/kacanegara.v7i4.2547

Abstract

Pelatihan dasar robot ARM bertujuan untuk meningkatkan minat dan bakat siswa di bidang Teknologi Elektro. Pelatihan ini diikuti oleh siswa-siswi Se-Pamekasan dan bertempat di Aula SMAN 4 Pamekasan. Pelatihan ini diadakan sebagai penunjang dalam perkembangan teknologi yang semakin pesat dan menyiapkan generasi muda untuk menghadapi tantangan di industri 4.0. Metode yang digunakan dalam pelatihan mencakup teori dasar mengenai robotika, pengenalan komponen robot ARM, serta praktek langsung dalam merakit, memprogram robot ARM melalui aplikasi Arduino IDE, serta dapat mengupload program ke Arduino. Robot Arm dikendalikan oleh joystick adalah sebuah sistem mekanik yang dapat digerakkan dan dikendalikan secara manual menggunakan joystick. Hasil dari pelatihan ini siswa dapat merakit dan memprogram robot ARM sehingga dapat berfungsi dengan baik. Pelatihan ini diharapkan dapat menjadi modal bagi siswa-siswi SMA dalam melanjutkan ditingkat perkuliahan. Pelatihan ini juga dapat berkontribusi dalam pengembangan sumber daya manusia yang kompeten di bidang teknologi elektro. 
Implementation of Neural Networks in Daily PV Power Output Prediction Using Bayesian Regularization Algorithms to Assist Energy Management Systems Mahmudah, Norma; Delfianti, Rezi; Sigit, Firman Matiinu; Putra, Dimas Panji Eka Jala; Nusyura, Fauzan
Jurnal Edukasi Elektro Vol. 9 No. 2 (2025): Jurnal Edukasi Elektro Volume 9, No. 2, November 2025
Publisher : DPTE FT UNY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jee.v9i2.91044

Abstract

Solar power plants have several advantages, namely continuous energy production, reduced electricity demand, and low photovoltaic maintenance, so that PV power output can be optimized with reliable PV power output predictions. Implementation of Artificial Neural Network (ANN) to predict photovoltaic (PV) power output, using the Bayesian Regularization algorithm. Accurate PV power output prediction is very important in power systems. The data used are solar radiation, PV module temperature, ambient temperature, and actual PV power output, with the target being the PV power output for the next day with the PV power output output for the next day. The architecture used in this study is a Cascade Forward Neural Network (CFNN) and an Elman Neural Network (ENN). Both ANN models use daily data sets and performance evaluation using Mean Square Error (MSE). The results of the study show that ENN is more accurate than CFNN. ENN had the lowest MSE of 0.00664 at a configuration of N=8 and R of 0.9922 with a training time of 6.4 seconds, while CFNN recorded the lowest MSE of 0.024306 with N=25. ENN's ability to capture time series patterns in PV is more reliable and effective. Reliable predictions can assist in energy management systems because they help maintain supply balance, reduce the risk of failure, and improve system stability.