This Author published in this journals
All Journal Narra J
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Effect of SARS-CoV-2 spike protein exposure on ACE2 and interleukin 6 productions in human adipocytes: An in-vitro study Ardiana, Meity; Suryawan, I GR.; Hermawan, Hanestya O.; Harsono, Primasitha M.; Shafira, Aisya A.; Anandita, Faizal A.
Narra J Vol. 3 No. 3 (2023): December 2023
Publisher : Narra Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52225/narra.v3i3.284

Abstract

Since adipocytes play a crucial role in pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection due to their interaction with angiotensin-converting enzyme 2 (ACE2) and interleukin 6 (IL-6), obesity is associated with an increased risk of coronavirus disease 2019 (COVID-19) mortality. Discovery of ACE2 as a SARS-CoV-2 receptor raises a controversy about whether to use ACE inhibitors (ACEIs) could be an optional therapy to prevent cytokine storms. Studies assessing the expressions of ACE2 and IL-6 upon exposure to SARS‑CoV‑2 is therefore important as a basis for therapeutical trials in the future. The aim of this study was to determine the effect of SARS-CoV-2 spike protein exposure on the production of ACE2 and IL-6 in adipocyte cells. Adipocytes were collected from abdominal adipose tissues of healthy and obese 45-year-old male donor having neither a history of SARS‑CoV‑2 infection nor COVID-19 vaccination. After being stained using the oil red O protocol, the viable adipocytes were then exposed to S1 subunit of SARS-CoV-2 spike protein. The levels of ACE2 and IL-6 were then examined using the enzyme-linked immunosorbent assay (ELISA). The results showed significant increase of ACE2 (90.22 µg/mL) and IL-6 level (60.01 µg/mL) in human adipocytes upon exposure compared to unexposed control cells (ACE2 13.33 µg/mL; IL-6 21.33 µg/mL), both comparisons had p<0.001). This study provides insight into the basic mechanism of severe COVID-19 symptoms in obese patients and provides a basic information of the potential of ACE inhibitors as an optional therapy for COVID-19 patients with obesity.
Perindopril and losartan affect ACE-2 and IL-6 expression in obese rat model Andrianto, Andrianto; Hermawan, Hanestya O.; Harsoyo, Primasitha M.; Zaini, Bagas SI.; Muhammad, Akbar R.
Narra J Vol. 4 No. 2 (2024): August 2024
Publisher : Narra Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52225/narra.v4i2.681

Abstract

Obesity has emerged as a worldwide health concern due to its increasing prevalence. Adipocytes have the ability to express angiotensin-converting enzyme 2 receptors (ACE2) and several adipocytokines. These expressions could lead to the activation of a cytokine storm, which in turn promotes the development of cardiovascular diseases. The aim of this study was to investigate the impact of perindopril and losartan exposure on the ACE2 and interleukin 6 (IL-6) levels in adipocyte cells. This study used an in vivo true experimental design utilizing a post-test-only control group. A total of 24 adult male albino rats were divided into four groups, one group served as the non-obese (negative control), while the other three groups were obese: (1) the positive control (untreated obese rats); (2) perindopril group (2 mg/kg BW/day orally for 4 weeks); and (3) losartan group (20 mg/kg BW/day for 4 weeks). Afterwards, the rats were euthanized, and the visceral fat tissue were obtained during dissection. The levels of ACE2 and IL-6 were measured using the enzyme-linked immunosorbent assay (ELISA). Losartan administration in obese rats resulted in a notable elevation in ACE2 levels compared to both the perindopril group (losartan vs perindopril, p=0.011) and the positive control (p=0.004). In addition, the treatment of perindopril and losartan in obese rats resulted in a significant reduction in IL-6 levels when compared to the positive control (perindopril vs positive control, p=0.020; losartan vs positive control, p=0.002, respectively). This study provides insight into the administration of perindopril and losartan, which could suppress the pro-inflammatory (IL-6) but increase the ACE2 levels in adipose tissue.
Perindopril decreases angiotensin-converting enzyme 2 (ACE2) expression in human adipocytes exposed to SARS-CoV-2 S1 spike protein Harsoyo, Primasitha M.; Ardiana, Meity; Hermawan, Hanestya O.; Purnamasari, Yeni; Anandita, Faizal A.
Narra J Vol. 4 No. 2 (2024): August 2024
Publisher : Narra Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52225/narra.v4i2.746

Abstract

The expression of angiotensin-converting enzyme 2 (ACE2) in the adipose tissues of obese patients needs further study, as it may aid infection and serve as a viral reservoir. There has been controversy over whether to use ACE inhibitors to prevent coronavirus disease 2019 (COVID-19) severity. Perindopril, an ACE2 inhibitor, has been proposed; however, its relationship with COVID-19 has not yet been clear. The aim of this study was to investigate the effect of perindopril to reduce the expression of ACE2 and pro-inflammatory cytokine in adipocytes exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Enzymatic isolation of adipose tissues was performed from obese male donor patients aged 30–50 years, then exposed it with SARS-CoV-2 S1 spike protein. This study also included human recombinant ACE2 (hrsACE2) as a comparison to perindopril. The expression of ACE2 was evaluated using ELISA. Our data indicated that SARS-CoV-2 Spike protein exposure increased ACE2 expression significantly. Administration of perindopril decreased ACE2 expression (43.37 µg/mL) significantly compared to the positive group (80.31 µg/mL) (p<0.001). Perindopril administration also decreased IL-6 levels significantly compared to positive group(p<0.001).  This study highlights that perindopril could reduce the ACE2 expression and pro-inflammatory cytokine levels in adipocytes exposed to SARS-CoV-2 S1 spike protein.