Claim Missing Document
Check
Articles

Found 7 Documents
Search

Intelligent classification and performance prediction of multi-text assessment with recurrent neural networks-long short-term memory Paryono, Tukino; Sediyono, Eko; Hendry, Hendry; Huda, Baenil; Lia Hananto, April; Yuniar Rahman, Aviv
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3350-3363

Abstract

The assessment document at the time of study program accreditation shows performance achievements that will have an impact on the development of the study program in the future. The description in the assessment document contains unstructured data, making it difficult to identify target indicators. Apart from that, the number of Indonesian-based assessment documents is quite large, and there has been no research on these assessment documents. Therefore, this research aims to classify and predict target indicator categories into 4 categories: deficient, enough, good, and very. Learning testing of the Indonesian language assessment sentence classification model using recurrent neural networks-long short-term memory (RNN-LSTM) using 5 layers and 3 parameters produces performance with an accuracy value of 94.24% and a loss of 10%. In the evaluation with the Adamax optimizer, it had a high level of accuracy, namely 79%, followed by stochastic gradient descent (SGD) of 78%. For the Adam optimizer, Adadelta, and root mean squared propagation (RMSProp) have an accuracy rate of 77%.
Machine Learning Models for Predicting Flood Events Using Weather Data: An Evaluation of Logistic Regression, LightGBM, and XGBoost Maharina, Maharina; Paryono, Tukino; Fauzi, Ahmad; Indra, Jamaludin; Sihabudin, Sihabudin; Harahap, Muhammad Khoiruddin; Rizki, Lutfi Trisandi
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.503

Abstract

This study examines flood prediction in Jakarta, Indonesia, a pressing concern due to its significant implications for public safety and urban management. Machine Learning (ML) presents promising methodologies for accurately forecasting floods by leveraging weather data. However, flood prediction in Jakarta remains challenging due to the city’s highly variable weather patterns, including fluctuations in rainfall, humidity, temperature, and wind characteristics. Existing methods often struggle with these complexities, as they rely on traditional ML models such as K-Nearest Neighbors (KNN), which may not capture certain patterns or provide high accuracy and robustness. Therefore, this study proposes three ML methods—Logistic Regression (LR), LightGBM, and XGBoost—to predict floods accurately. Five performance metrics (i.e., accuracy, area under the curve (AUC), precision, recall, and F1-score) were used to measure and compare the accuracy of the algorithms. The proposed method consists of three main processes. The first process involves data preprocessing and evaluation using 14 different ML models. In the second process, additional feature engineering is applied to improve the quality of the data. Finally, the third process combines the previous steps with oversampling techniques and cross-validation methods. This structured approach aims to enhance the overall performance of the analysis. The experimental results show that Process 3 significantly improves performance compared to Processes 1 and 2. The model predicts floods with an accuracy score of 93.82% for LR, 96.67% for XGBoost, and 96.81% for LightGBM, respectively. Thus, the proposed model offers a solution for operational decision-making in flood risk management, including flood mitigation planning.
Classification of Starling Images Using a Bayesian Network Hananto, April Lia; Rahman, Aviv Yuniar; Paryono, Tukino; Priyatna, Bayu; Hananto, Agustia; Huda, Baenil
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.423

Abstract

The classification of starling species is vital for biodiversity conservation, especially as some species are endangered. This research investigates the effectiveness of the Bayesian Network (BayesNet) for classifying starling species and compares its performance with Artificial Neural Networks (ANN) and Naive Bayes models. The dataset comprises 300 images of five starling species—Bali, Rio, Moon, Kebo, and Uret—captured under controlled conditions. Feature extraction focused on color, texture, and shape, while data augmentation through slight image rotations was applied to enhance model generalization. The BayesNet model achieved an accuracy of 96.29% using a 90:10 training-to-testing split, outperforming ANN (90.74%) and Naive Bayes variants. Precision, recall, F1-score, and AUC-ROC values further validated the robustness of the BayesNet model, with precision at 0.90, recall at 0.91, F1-score at 0.92, and AUC-ROC at 0.95. These results demonstrate the superior performance of multi-feature Bayesian Networks in starling classification compared to other machine learning models. The novelty of this study lies in its application of a probabilistic approach using Bayesian Networks, which enhances interpretability and performance, especially in scenarios with limited data. Future work may explore additional feature sets and advanced machine learning models to further improve classification accuracy and robustness.
Pelatihan Penggunaan Paint Untuk Melatih Motorik Siswa Anak Sekolah Dasar Paryono, Tukino; Novalia, Elfina; Yoga Astario, Bayu; Hananto, Agustia
VIDHEAS: Jurnal Nasional Abdimas Multidisiplin Vol. 2 No. 2 (2024): Desember 2024
Publisher : VINICHO MEDIA PUBLISINDO

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This training program aims to assist elementary school students in developing their fine motor skills by utilizing Paint software. Fine motor skills, which involve coordinating small muscles like the hands and fingers, are essential for children's growth and development. In this activity, Paint is used as a tool to enhance both students' creativity and their motor abilities. Students engage in activities such as drawing, coloring, and pattern-making, which improve hand-eye coordination and establish fundamental artistic skills. The outcomes of this training reveal significant improvements in students' fine motor skills as well as their proficiency in using technology for creative purposes.
EVALUATION IT GOVERNANCE BASED ON COBIT 2019 FRAMEWORK AT BUANA PERJUANGAN UNIVERSITY Yazid, Muhammad Abi; Hananto, April Lia; Priyatna, Bayu; Paryono, Tukino
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 2 (2025): Maret 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3791

Abstract

Abstract: The utilization of Information Technology (IT) in higher education institutions is crucial for supporting academic and administrative activities. The Data and Information Center (PUSDATIN) of UBP Karawang manages various IT services, such as Sistem Informasi Perguruan Tinggi (SIPT), e-learning Buana Online Course (BOC), and others. This study aims to evaluate the maturity level of IT governance at UBP Karawang to ensure alignment with the university's strategic goals and identify areas requiring improvement. The research employs a quantitative descriptive method based on COBIT 2019, with data collected from 92 respondents, analyzed through goals cascade mapping and maturity level measurement. The evaluation results across 14 COBIT 2019 domains indicate that the IT governance maturity level at UBP Karawang is at Level 4 (Quantitatively Managed) with a score of 3.86 and an average gap of 1.13 from the expected level. The findings suggest that while IT governance at UBP Karawang is well-managed, there is still room for improvement. Therefore, several recommendations are proposed to optimize IT governance effectiveness, ensure regulatory compliance, and support the achievement of the university's strategic objectives.            Keywords: COBIT 2019; IT evaluation; IT governance; maturity level. Abstrak: Pemanfaatan Teknologi Informasi (TI) di perguruan tinggi sangat krusial untuk mendukung aktivitas akademik dan administratif. Pusat Data dan Informasi (PUSDATIN) UBP Karawang mengelola berbagai layanan TI, seperti Sistem Informasi Perguruan Tinggi (SIPT), e-learning Buana Online Course (BOC) dan lain-lain. Penelitian ini bertujuan untuk mengevaluasi tingkat kematangan tata kelola TI di UBP Karawang guna memastikan keselarasan dengan tujuan universitas serta mengidentifikasi area yang memerlukan perbaikan. Penelitian ini menerapkan metode deskriptif kuantitatif berbasis COBIT 2019, dengan data diperoleh dari 92 responden, dianalisis melalui pemetaan goals cascade dan pengukuran maturity level. Hasil evaluasi pada 14 domain COBIT 2019 menunjukkan tingkat kematangan TI UBP Karawang berada di Level 4 (Terkelola secara Kuantitatif) dengan skor 3.86, serta rata-rata gap 1.13 dari tingkat yang diharapkan. Kesimpulan dari penelitian ini mengindikasikan bahwa meskipun tata kelola TI di UBP Karawang telah terkelola dengan baik, masih terdapat ruang untuk perbaikan. Oleh karena itu, beberapa rekomendasi diajukan guna mengoptimalkan efektivitas tata kelola TI, menjamin kepatuhan terhadap regulasi, serta mendukung pencapaian tujuan strategis universitas. Kata kunci: COBIT 2019; evaluasi TI; maturity level; tata kelola TI. 
ANALISIS OPINI PENGGUNA APLIKASI SHOPEE DENGAN NAÏVE BAYES CLASSIFIER atikah, dwi; hananto, agustia; paryono, tukino; novalia, elfina
Jurnal Informatika Vol 9, No 3 (2025): JIKA (Jurnal Informatika)
Publisher : University of Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/jika.v9i3.14462

Abstract

Pertumbuhan pesantnya e-commerce di Indonesia berdampak pada meningkatnya ulasan pengguna terhadap aplikasi belanja berani seperti Shopee. Ulasan ini mewakili persepsi pengguna dan dapat dimanfaatkan untuk memancarkan kepuasan serta meningkatkan kualitas layanan. Menggunakan algoritma Naive Bayes, studi ini menerapkan strategi klasifikasi untuk memahami sikap dalam ulasan pengguna aplikasi shopee di Google Play Store. Data diperoleh menggunakan teknik web scraping dan kemudian menjalani beberapa proses, termasuk pembersihan data teks, tokenisasi, penghapusan kata-kata yang tidak relevan, dan normalisasi. Sentimen evaluasi dirinci secara manual ke dalam tiga kelompok berbeda: sangat_puas, puas, dan tidak_puas. Untuk mengatasi distribusi kelas, digunakan teknik RandomOverSampler Sebelum data dibagi menjadi set pelatihan dan pengujian, teks kemudian dianalisis menggunakan teknik TF-IDF dan dibor dengan algoritma Multinomial Naive Bayes. Akurasi, presisi, recall, skor F1, dan matriks kebingungan dimasukkan ke dalam proses evaluasi untuk menyalakan kinerja model. Hasil penelitian menunjukkan bahwa model memperoleh tingkat ketepatan mencapai 75,33% dengan kinerja yang cukup konsisten di semua label. Teknik oversampling terbukti efektif dalam menyeimbangkan kelas, meskipun masih terdapat prediksi silang antar kategori yang mirip. Penelitian ini menjadi pijakan awal bagi pengembangan sistem analisis sentimen otomatis berbasis bahasa Indonesia.
KLASIFIKASI SENTIMEN ULASAN PRODUK SUNSCREEN PADA FEMALE DAILY MENGGUNAKAN METODE NAÏVE BAYES baktria, leonyka; huda, baenil; novalia, elfina; paryono, tukino
Jurnal Informatika Vol 9, No 3 (2025): JIKA (Jurnal Informatika)
Publisher : University of Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/jika.v9i3.14461

Abstract

Perkembangan teknologi internet mendorong konsumen untuk lebih aktif membagikan pengalamannya melalui ulasan, salah satunya pada platform Female Daily. Ulasan produk tabir surya dari pengguna memberikan wawasan sentimen yang berharga. Namun, menganalisis data dalam skala besar secara manual tidaklah efektif. Studi ini bertujuan untuk menganalisis sentimen ulasan produk tabir surya menggunakan algoritma Naïve Bayes Classifier. Data dikumpulkan melalui web scraping, diikuti oleh pra-pemrosesan teks dan pelabelan sentimen menurut skor peringkat menjadi tiga kategori: sangat cocok, cocok, dan tidak cocok. Distribusi dalam distribusi kelas diatasi menggunakan teknik oversampling, dan data kemudian diubah menjadi format numerik dengan TF-IDF. Model dibor dengan algoritma Multinomial Naïve Bayes dan dievaluasi menggunakan matriks konfusi dengan metrik akurasi, presisi, recall, dan F1-score. Hasil evaluasi menunjukkan bahwa model mencapai akurasi 83,33%, dengan presisi 0,84, recall 0,83, dan skor F1-score 0,83. Visualisasi WordCloud digunakan untuk mengidentifikasi kata-kata dominan di setiap kategori sentimen. Temuan ini menunjukkan efektivitas algoritma Naïve Bayes dalam mengklasifikasikan opini konsumen dengan baik dan menyoroti potensinya untuk mengembangkan sistem rekomendasi produk berbasis ulasan, serta untuk memahami persepsi konsumen dalam industri kecantikan.