Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Applied Data Sciences

Machine Learning Models for Predicting Flood Events Using Weather Data: An Evaluation of Logistic Regression, LightGBM, and XGBoost Maharina, Maharina; Paryono, Tukino; Fauzi, Ahmad; Indra, Jamaludin; Sihabudin, Sihabudin; Harahap, Muhammad Khoiruddin; Rizki, Lutfi Trisandi
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.503

Abstract

This study examines flood prediction in Jakarta, Indonesia, a pressing concern due to its significant implications for public safety and urban management. Machine Learning (ML) presents promising methodologies for accurately forecasting floods by leveraging weather data. However, flood prediction in Jakarta remains challenging due to the city’s highly variable weather patterns, including fluctuations in rainfall, humidity, temperature, and wind characteristics. Existing methods often struggle with these complexities, as they rely on traditional ML models such as K-Nearest Neighbors (KNN), which may not capture certain patterns or provide high accuracy and robustness. Therefore, this study proposes three ML methods—Logistic Regression (LR), LightGBM, and XGBoost—to predict floods accurately. Five performance metrics (i.e., accuracy, area under the curve (AUC), precision, recall, and F1-score) were used to measure and compare the accuracy of the algorithms. The proposed method consists of three main processes. The first process involves data preprocessing and evaluation using 14 different ML models. In the second process, additional feature engineering is applied to improve the quality of the data. Finally, the third process combines the previous steps with oversampling techniques and cross-validation methods. This structured approach aims to enhance the overall performance of the analysis. The experimental results show that Process 3 significantly improves performance compared to Processes 1 and 2. The model predicts floods with an accuracy score of 93.82% for LR, 96.67% for XGBoost, and 96.81% for LightGBM, respectively. Thus, the proposed model offers a solution for operational decision-making in flood risk management, including flood mitigation planning.
Classification of Starling Images Using a Bayesian Network Hananto, April Lia; Rahman, Aviv Yuniar; Paryono, Tukino; Priyatna, Bayu; Hananto, Agustia; Huda, Baenil
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.423

Abstract

The classification of starling species is vital for biodiversity conservation, especially as some species are endangered. This research investigates the effectiveness of the Bayesian Network (BayesNet) for classifying starling species and compares its performance with Artificial Neural Networks (ANN) and Naive Bayes models. The dataset comprises 300 images of five starling species—Bali, Rio, Moon, Kebo, and Uret—captured under controlled conditions. Feature extraction focused on color, texture, and shape, while data augmentation through slight image rotations was applied to enhance model generalization. The BayesNet model achieved an accuracy of 96.29% using a 90:10 training-to-testing split, outperforming ANN (90.74%) and Naive Bayes variants. Precision, recall, F1-score, and AUC-ROC values further validated the robustness of the BayesNet model, with precision at 0.90, recall at 0.91, F1-score at 0.92, and AUC-ROC at 0.95. These results demonstrate the superior performance of multi-feature Bayesian Networks in starling classification compared to other machine learning models. The novelty of this study lies in its application of a probabilistic approach using Bayesian Networks, which enhances interpretability and performance, especially in scenarios with limited data. Future work may explore additional feature sets and advanced machine learning models to further improve classification accuracy and robustness.