Claim Missing Document
Check
Articles

Found 2 Documents
Search

IDENTIFIKASI DATA PENERIMAAN MAHASISWA BARU DI UNIVERSITAS MUHAMMADIYAH BENGKULU Yoga Widianto, Indra; Vioneka, Ranti; Jayusta, Evan; Juhardi, Ujang; Ristontowi
Jurnal Ilmiah Mahasiswa Kuliah Kerja Nyata (JIMAKUKERTA) Vol. 4 No. 1 (2024): JIMAKUKERTA
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tujuan dari penelitian ini adalah untuk menganalisis data penerimaan mahasiswa baru Universitas Muhammadiyah Bengkulu tahun 2023. Metode analisis data yang digunakan meliputi statistik deskriptif untuk mengetahui jumlah pelamar, jumlah pelamar yang berhasil, serta karakteristik demografi dan akademik siswa yang berhasil. Kami juga melakukan analisis komparatif dengan tahun sebelumnya untuk memahami tren jumlah mahasiswa yang terdaftar di universitas kami. Kegiatan ini dilaksanakan dimulai dari tanggal 1 Februari sampai dengan tanggal 29 Februari 2024. Data yang digunakan dalam penelitian ini berasal dari Bagian Penerimaan Mahasiswa Baru Universitas Muhammadiyah Bengkulu. Analisis tersebut menunjukkan tren pendaftaran, demografi, dan profil akademik mahasiswa baru. Studi ini dapat memberikan wawasan yang berguna bagi para pengambil kebijakan universitas dalam merancang strategi penerimaan mahasiswa baru di masa depan. Kesimpulan dari analisis data menunjukkan bahwa UMB telah efektif menggunakan Teknologi Informasi (TI) dalam proses penerimaan mahasiswa baru, terutama melalui sistem pendaftaran online.
Robustness Analysis of QR – Code Based and Geolocation Based Attendance System Jayusta, Evan; Marhalim, Marhalim; Immanullah, Muhammad; Reswan, Yuza
Jurnal Media Infotama Vol 20 No 2 (2024): Oktober
Publisher : UNIVED Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/jmi.v20i2.6510

Abstract

The use of QR-code and GPS technology in the attendance system also has several advantages, such as making the attendance process easier for students, monitoring employee attendance accurately and efficiently, and improving the quality of student work. Therefore, it is important to compare the efficiency of the QR-code attendance method with Geolocation to find out which technology is more effective and efficient in improving the attendance system. In this research the author used the K-means Clustering method. The K-means method is a non-hierarchical data grouping method that attempts to partition existing data into two or more 13 groups. This method partitions data into groups so that data with the same characteristics is included in other groups. The research results show that Cluster 1 has a centeroid that is close to the QR Code features (3,4,4), namely moderate efficiency in application implementation, relatively high ease of use, and system robustness with high data accuracy. Cluster 2 has a centeroid with Geolocation features (3,3,3), namely moderate efficiency and flexibility, moderate ease of use, and system robustness with moderate data accuracy. Thus, after obtaining comparison results between QR code and Geolocation in the lecture attendance process, researchers can recommend the best system to use in terms of user aspects and needs. If the user needs a presence system that prioritizes ease of use and robustness of the system, the user is suited to using the QR-Code system because the usability and durability aspects are relatively high. Meanwhile, if the user prioritizes efficiency and flexibility in the process, it is best to use a presence system in the form of Geolocation, because the results of this research show that the efficient aspect of Geolocation is higher