Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

FiMoDeAL: pilot study on shortest path heuristics in wireless sensor network for fire detection and alert ensemble Ifeanyi Akazue, Maureen; Efetobore Edje, Abel; Okpor, Margaret Dumebi; Adigwe, Wilfred; Ejeh, Patrick Ogholuwarami; Odiakaose, Christopher Chukwufunaya; Ojugo, Arnold Adimabua; Edim, Edim Bassey; Ako, Rita Erhovwo; Geteloma, Victor Ochuko
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.8084

Abstract

With the incessant outbreak of fire, the heavy loss to both lives and properties in the society fire has since become a critical issue and challenge that needs our daily attention to be resolved. Loss of lives and properties to fire outbreak in 2021 alone as occurring in major Nigerian markets and residential homes was estimated at over 3 trillion Naira. Our study proposes a wireless sensor network internet of things (IoT) based ensemble to aid the effective monitoring, detection and alerting of residents and fire service departments. With cost as a major issue and the requisite installation of fire and smoke detectors in many houses our ensemble can efficiently integrate into the existing system using the ESP8285-controller to create a comprehensive access control system. The system provides real time monitor and control capabilities that will allow administrators to track and manage fire monitor and detection within a facility. Thus, enhances system's efficiency and performance.
Unmasking effects of feature selection and SMOTE-Tomek in tree-based random forest for scorch occurrence detection Dumebi Okpor, Margaret; Eluemnor Anazia, Kizito; Adigwe, Wilfred; Abugor Okpako, Ejaita; Moses Setiadi, De Rosal Ignatius; Adimabua Ojugo, Arnold; Omoruwou, Felix; Erhovwo Ako, Rita; Ochuko Geteloma, Victor; Valentine Ugbotu, Eferhire; Chukwudi Aghaunor, Tabitha; Enadona Oweimeito, Amanda
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8901

Abstract

Scorch occurrence during the production of flexible polyurethane foam has been a menace that consistently, jeopardize a foam’s integrity and resilience. It leads to foam suppression and compactness integrity failure due to scorch. There is always the increased likelihood of scorching, and makes crucial the utilization of methods that seek to avert it. Studies predict that the formation of foam constituent processes via optimization using machine learning have adequately trained models to effectively identify scorch occurrence during the profiling in the polyurethane foam production. Our study utilizes the random forest (RF) ensemble with feature selection (FS) and data balancing technique to identify production predictors. Study yields accuracy of 0.9998 with F1-score of 0.9819. Model yields 2-distinct cases for (non)-occurrence of scorch respectively, and the ensemble demonstrates that it can effectively and efficiently predict the occurrence of scorch in the production of flexible polyurethane foam manufacturing process.