Claim Missing Document
Check
Articles

Found 7 Documents
Search

FiMoDeAL: pilot study on shortest path heuristics in wireless sensor network for fire detection and alert ensemble Ifeanyi Akazue, Maureen; Efetobore Edje, Abel; Okpor, Margaret Dumebi; Adigwe, Wilfred; Ejeh, Patrick Ogholuwarami; Odiakaose, Christopher Chukwufunaya; Ojugo, Arnold Adimabua; Edim, Edim Bassey; Ako, Rita Erhovwo; Geteloma, Victor Ochuko
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.8084

Abstract

With the incessant outbreak of fire, the heavy loss to both lives and properties in the society fire has since become a critical issue and challenge that needs our daily attention to be resolved. Loss of lives and properties to fire outbreak in 2021 alone as occurring in major Nigerian markets and residential homes was estimated at over 3 trillion Naira. Our study proposes a wireless sensor network internet of things (IoT) based ensemble to aid the effective monitoring, detection and alerting of residents and fire service departments. With cost as a major issue and the requisite installation of fire and smoke detectors in many houses our ensemble can efficiently integrate into the existing system using the ESP8285-controller to create a comprehensive access control system. The system provides real time monitor and control capabilities that will allow administrators to track and manage fire monitor and detection within a facility. Thus, enhances system's efficiency and performance.
Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost Ako, Rita Erhovwo; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Akazue, Maureen Ifeanyi; Yoro, Rume Elizabeth; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Odiakaose, Chris Chukwufunaya; Abere, Reuben Akporube; Emordi, Frances Uche; Geteloma, Victor Ochuko; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications Vol. 2 No. 1 (2024): JCTA 2(1) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10562

Abstract

Customer attrition has become the focus of many businesses today – since the online market space has continued to proffer customers, various choices and alternatives to goods, services, and products for their monies. Businesses must seek to improve value, meet customers' teething demands/needs, enhance their strategies toward customer retention, and better monetize. The study compares the effects of data resampling schemes on predicting customer churn for both Random Forest (RF) and XGBoost ensembles. Data resampling schemes used include: (a) default mode, (b) random-under-sampling RUS, (c) synthetic minority oversampling technique (SMOTE), and (d) SMOTE-edited nearest neighbor (SMOTEEN). Both tree-based ensembles were constructed and trained to assess how well they performed with the chi-square feature selection mode. The result shows that RF achieved F1 0.9898, Accuracy 0.9973, Precision 0.9457, and Recall 0.9698 for the default, RUS, SMOTE, and SMOTEEN resampling, respectively. Xgboost outperformed Random Forest with F1 0.9945, Accuracy 0.9984, Precision 0.9616, and Recall 0.9890 for the default, RUS, SMOTE, and SMOTEEN, respectively. Studies support that the use of SMOTEEN resampling outperforms other schemes; while, it attributed XGBoost enhanced performance to hyper-parameter tuning of its decision trees. Retention strategies of recency-frequency-monetization were used and have been found to curb churn and improve monetization policies that will place business managers ahead of the curve of churning by customers.
Comparative Data Resample to Predict Subscription Services Attrition Using Tree-based Ensembles Okpor, Margaret Dumebi; Aghware, Fidelis Obukohwo; Akazue, Maureen Ifeanyi; Ojugo, Arnold Adimabua; Emordi, Frances Uche; Odiakaose, Christopher Chukwufunaya; Ako, Rita Erhovwo; Geteloma, Victor Ochuko; Binitie, Amaka Patience; Ejeh, Patrick Ogholuwarami
Journal of Fuzzy Systems and Control Vol. 2 No. 2 (2024): Vol. 2, No. 2, 2024
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v2i2.213

Abstract

The digital market today, is rippled with a variety of goods/services that promote monetization and asset exchange with clients constantly seeking improved alternatives at lowered cost to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. Such strategies include the upgrade of goods and services at lesser cost and targeted improved value chains to meet client needs. These are found to improve client retention and better monetization. The study predicts customer churn via tree-based ensembles with data resampling such as the random-under-sample, synthetic minority oversample (SMOTE), and SMOTE-edited nearest neighbor (SMOTEEN). We chose three (3) tree-based ensembles namely: (a) decision tree, (b) random forest, and (c) extreme gradient boosting – to ensure we have single and ensemble classifier(s) to assess how well bagging and boosting modes perform on consumer churn prediction. With chi-square feature selection mode, the Decision tree model yields an accuracy of 0.9973, F1 of 0.9898, a precision of 0.9457, and a recall of 0.9698 respectively; while Random Forest yields an accuracy of 0.9973, F1 of 0.9898, precision 0.9457, and recall 0.9698 respectively. The XGBoost outperformed both Decision tree and Random Forest classifiers with an accuracy of 0.9984, F1 of 0.9945, Precision of 0.9616, and recall of 0.9890 respectively – which is attributed to its use of hyper-parameter tuning on its trees. We also note that SMOTEEN data balancing outperforms other data augment schemes with retention of a 30-day moratorium period for our adoption of the recency-frequency-monetization to improve monetization and keep business managers ahead of the consumer attrition curve.
Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble Okpor, Margaret Dumebi; Aghware, Fidelis Obukohwo; Akazue, Maureen Ifeanyi; Eboka, Andrew Okonji; Ako, Rita Erhovwo; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Binitie, Amaka Patience; Geteloma, Victor Ochuko; Ejeh, Patrick Ogholuwarami
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-14

Abstract

The digital revolution frontiers have rippled across society today – with various web content shared online for users as they seek to promote monetization and asset exchange, with clients constantly seeking improved alternatives at lowered costs to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. The birth of smartphones has proliferated feats such as mobility, ease of accessibility, and portability – which, in turn, have continued to ease their rise in adoption, exposing user device vulnerability as they are quite susceptible to phishing. With users classified as more susceptible than others due to online presence and personality traits, studies have sought to reveal lures/cues as exploited by adversaries to enhance phishing success and classify web content as genuine and malicious. Our study explores the tree-based Random Forest to effectively identify phishing cues via sentiment analysis on phishing website datasets as scrapped from user accounts on social network sites. The dataset is scrapped via Python Google Scrapper and divided into train/test subsets to effectively classify contents as genuine or malicious with data balancing and feature selection techniques. With Random Forest as the machine learning of choice, the result shows the ensemble yields a prediction accuracy of 97 percent with an F1-score of 98.19% that effectively correctly classified 2089 instances with 85 incorrectly classified instances for the test-dataset.
Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner Odiakaose, Christopher Chukwufunaya; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Eboka, Andrew Okonji; Binitie, Amaka Patience; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Ibor, Ayei Egu; Ako, Rita Erhovwo; Geteloma, Victor Ochuko; Ugbotu, Eferhire Valentine; Aghaunor, Tabitha Chukwudi
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 3 (2024): December 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.3048-3719-43

Abstract

High blood pressure (or hypertension) is a causative disorder to a plethora of other ailments – as it succinctly masks other ailments, making them difficult to diagnose and manage with a targeted treatment plan effectively. While some patients living with elevated high blood pressure can effectively manage their condition via adjusted lifestyle and monitoring with follow-up treatments, Others in self-denial leads to unreported instances, mishandled cases, and in now rampant cases – result in death. Even with the usage of machine learning schemes in medicine, two (2) significant issues abound, namely: (a) utilization of dataset in the construction of the model, which often yields non-perfect scores, and (b) the exploration of complex deep learning models have yielded improved accuracy, which often requires large dataset. To curb these issues, our study explores the tree-based stacking ensemble with Decision tree, Adaptive Boosting, and Random Forest (base learners) while we explore the XGBoost as a meta-learner. With the Kaggle dataset as retrieved, our stacking ensemble yields a prediction accuracy of 1.00 and an F1-score of 1.00 that effectively correctly classified all instances of the test dataset.
Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow Binitie, Amaka Patience; Odiakaose , Christopher Chukwufunaya; Okpor, Margaret Dumebi; Ejeh, Patrick Ogholuwarami; Eboka, Andrew Okonji; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Ako, Rita Erhovwo; Aghaunor, Tabitha Chukwudi; Geteloma, Victor Ochuko; Afotanwo, Anderson
Journal of Fuzzy Systems and Control Vol. 2 No. 3 (2024): Vol. 2, No. 3, 2024
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v2i3.267

Abstract

The digital revolution births transformation in many facets of today’s society. Its adoption in transportation to curb traffic congestion in major cities globally advances smart-city initiatives. Challenges of population growth, lack of datasets, and aging infrastructure have necessitated the need for traffic analytics. Studies have estimated an associated global annual loss of $583 billion to traffic congestion for 2023. This, caused fuel wastage, loss of time, and increased costs across congested areas. With the cost of building more road networks, cities must advance new ways to improve traffic flow via anomaly detection as an early warning in the flow pattern. Our study posits stacked learning with extreme gradient boost as a meta-learner to help address imbalanced datasets, yield faster model construction, and ensure improved performance via enhanced anomalous data detection.
Pilot study on deploying a wireless sensor-based virtual-key access and lock system for home and industrial frontiers Eboka, Andrew Okonji; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Odiakaose, Christopher Chukufunaya; Okpako, Ejaita Abugor; Ojugo, Arnold Adimabua; Ako, Rita Erhovwo; Binitie, Amaka Patience; Onyemenem, Innocent Sunny; Ejeh, Patrick Ogholuwarami; Geteloma, Victor Ochuko
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i1.pp287-297

Abstract

The rise in data processing activities vis-à-vis the consequent rise in adoption and adaptation of information and communication tech related approaches to resolve societal challenges has become both critical and imperative. Virtualization have become the order of the day to bridge various lapses of human mundane tasks and endeavors. Its positive impacts on society cannot be underestimated. This study advances a virtual wireless sensor-based key-card access system with cost-effective solution to manage access to restricted areas within a facility. We seek to integrate virtual key card access, web-access control, solenoid lock integration, and ESP32- controller to create a dependable internet of things (IoT)-enabled access control system. Results show system benefit includes improved security, improved convenience, privacy, efficiency with real-time control capabilities that will allows building administrators to track and manage access to the facility remotely.