Claim Missing Document
Check
Articles

Found 3 Documents
Search

Relocation Study of Flores Sea Hypocenter (Mw = 7.3) Based on Single Station Estimation Using ObsPy Khusnani, Azmi; Anggraini, Ade; Jufriansah, Adi; Zulfakriza, Zulfakriza; Pramudya, Yudhiakto; Margiono; Wae, Konsenius Wiran
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.14503

Abstract

One area in Indonesia that is prone to disasters is the Flores Sea area, which has the potential for earthquakes to trigger tsunamis. This is due to the location of Flores, which is in a subduction zone that originates from the collision of the Indo-Australian (South) and Eurasian plates. Inaccuracies in earthquake locations are influenced by differences in residual travel time values, mathematical solutions to location problems, and inaccuracies in the seismic velocity model used. The accuracy of determining the hypocenter of an earthquake influences the location of the earthquake source, which will later be used as a reference in appropriate earthquake disaster mitigation planning. Based on this, an analysis of earthquake hypocenter data is needed, so it is important to carry out research. This research aims to relocate the hypocenter using ObsPy with a single station. The results obtained show that the Python package, namely ObsPy, can carry out data retrieval commands through filtering, detrending, normalisation, and determining data request parameters, such as the start and end times of the desired data, location, network, and data type. This research contributes to the field of seismology because the process of determining the hypocenter requires a relatively short time. Apart from that, the accuracy obtained also provides accurate values.
Correction to: Investigation of Liquefaction in Balaroa, Petobo, and Jonooge (Central Sulawesi, Indonesia) Caused by the 2018 Palu Earthquake Sequence Triyono, Rahmat; Widiyantoro, Sri; Zulfakriza, Zulfakriza; Supendi, Pepen; Rahman, Aditya Setyo; Gunawan, Mohamad Taufik; Oktavia, Nur Hidayati; Rahmatullah, Fajri Syukur; Fadhilah, Fildzah Zaniati; Habibah, Nur Fani; Sativa, Oriza; Permana, Dadang; Wallansha, Robby; Octantyo, Ardian Yudhi; Persada, Yoga Dharma; Pranata, Bayu; Sujabar, Sujabar
Journal of Engineering and Technological Sciences Vol. 57 No. 2 (2025): Vol. 57 No. 2 (2025): April
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.2.10

Abstract

Correction to:  Journal of Engineering and Technological Sciences https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.1   The article titled "Investigation of Liquefaction in Balaroa, Petobo, and Jonooge (Central Sulawesi, Indonesia) Caused by the 2018 Palu Earthquake Sequence" , written by Rahmat Triyono, Sri Widiyantoro, Zulfakriza, Pepen Supendi, Aditya Setyo Rahman, Mohamad Taufik Gunawan, Nur Hidayati Oktavia, Fajri Syukur Rahmatullah,Fildzah Zaniati Fadhilah, Nur Fani Habibah, Oriza Sativa, Dadang Permana, Robby Wallansha, Ardian Yudhi Octantyo, Yoga Dharma Persada, Bayu Pranata, and Sujabar, was originally published electronically on thepublisher’s internet portal on 19 June 2024 . The corresponding author's affiliation at the time of publication was as follows: (1) Indonesian Agency of Meteorology, Climatology, and Geophysics, Jalan Angkasa 1 No. 2, Jakarta 10610, Indonesia; and (2) Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia.   Subsequently, the authors decided to update the corresponding author's affiliation to: (1) Geophysical Engineering Graduate Program, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia; and (2) Indonesian Agency of Meteorology, Climatology, and Geophysics, Jalan Angkasa 1 No. 2, Jakarta 10610, Indonesia.   The original article can be found online at https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.1
Investigation of Liquefaction in Balaroa, Petobo, and Jonooge (Central Sulawesi, Indonesia) Caused by the 2018 Palu Earthquake Sequence Triyono, Rahmat; Widiyantoro, Sri; Zulfakriza, Zulfakriza; Supendi, Pepen; Rahman, Aditya Setyo; Gunawan, Mohamad Taufik; Oktavia, Nur Hidayati; Rahmatullah, Fajri Syukur; Fadhilah, Fildzah Zaniati; Habibah, Nur Fani; Sativa, Oriza; Permana, Dadang; Wallansha, Robby; Octantyo, Ardian Yudhi; Persada, Yoga Dharma; Pranata, Bayu; Sujabar, Sujabar
Journal of Engineering and Technological Sciences Vol. 56 No. 3 (2024)
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2024.56.3.1

Abstract

The liquefaction that occurred in the city of Palu on September 28, 2018, was caused by a series of significant earthquakes that took place in a relatively short time around 25 minutes after the main earthquake of magnitude 7.5. This event was followed by aftershocks of magnitudes 6.4, 6.2, and 6.1. The magnitude 6.2 aftershock occurred at 10.16 UTC, while the magnitude 6.1 aftershock occurred at 10.25 UTC. These were both located very close to the liquefaction locations in Balaroa, Petobo, and Jono Oge. We investigated the mainshock and the three aftershocks using the NCEER method based on Vs30 measurements and data from the drill liquefaction locations at Balaroa, Petobo, and Jono Oge. We found that the liquefaction was not only caused by the main earthquake but also by the subsequent aftershocks that occurred within 25 minutes after the mainshock.