Prakash, Nelaturi Nanda
Unknown Affiliation

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Reduction of torque ripples using the DTC-SVM method in PMSM with extended Kalman filter Sudhakar, Ambarapu; Kumari, Popuri Rajani; Sai, Cheepurupalli Krishna Chaitanya; Kumar, Munuswamy Siva; Prakash, Nelaturi Nanda; Bhavana, Mukku; Rajanna, Bodapati Venkata; Kameswari, Yeluripati Lalitha
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i4.pp944-951

Abstract

A detailed analysis has been conducted on two motor control algorithms: direct torque control (DTC) and field-oriented control (FOC). There are two ways that a voltage source inverter (VSI) can regulate a permanent magnet synchronous motor (PMSM). When using the PMSM and voltage source inverter (VSI), dead time is employed to turn off both the upper and lower switches to prevent short circuits. However, by supplying the PMSM with unexpected polarity voltages at the VSI output voltage, this switching technique reduces distortion. It is challenging to utilize the sensor to directly detect the fault voltage that results in an open circuit. This work examines the nonlinearity of the electric power controller during dead time during PMSM operation using the DTC algorithm to increase control stability. The stress distribution is estimated using an extended Kalman filter (EKF). Ultimately, the model presented in this study verified the increase in stator current and torque output through simulations and testing.
Monitoring and speed control of AC motor using PWM technique Sudhakar, Ambarapu; Kumari, Popuri Rajani; Batakala, Jeevanrao; Kumar, Munuswamy Siva; Prakash, Nelaturi Nanda; Kameswari, Yeluripati Lalitha; Rajanna, Bodapati Venkata; Bhavana, Mukku
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i4.pp1005-1013

Abstract

This study focuses on how to monitor and regulate the speed of an AC motor using pulse width modulation (PWM) technology. PWM signals regulate motor voltage and enable continuous monitoring of voltage, current, and speed in addition to speed control. Comparing this technology to conventional techniques yields considerable advantages like enhanced power and speed control. PWM-based speed control can be implemented using circuits specifically designed for motor control or microcontrollers. It has been confirmed that PWM-based control can regulate the target motor under a variety of operating conditions and that it is reliable and efficient. To boost production and efficiency, this change management technique can be applied in a variety of industries, including robots, HVAC systems, and industrial automation. The study results show the significance of PWM technology for monitoring and controlling the speed of AC motors, providing productive and affordable solutions to a range of enterprises and sectors.
Speed control of BLDC motor using PID controller Ramu, Tirunagari Bhargava; Cheerla, Sreevardhan; Kallakuta, Ravi Kumar; Mohan, Kaja Krishna; Inthiyaz, Syed; Prakash, Nelaturi Nanda; Rajanna, Bodapati Venkata; Kumar, Cheeli Ashok
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp401-411

Abstract

The current state of science, technology, and industrial revolutions did not occur overnight. Many years of empirical study attempts by human intelligence have led to the world's current status. As a result, new technologies and innovations would constantly propel human civilization forward. Another outstanding invention of the present day is the brushless DC (BLDC) motor. This paper outlines the design of a BLDC motor control system utilizing MATLAB/Simulink software. The main aim of this project is to control the speed and to obtain time domain specifications of PID controller. The application of speed control of motor is vast and also required to maintain the work efficient without any disturbance, the power consumption, and any other fuel to run. On the basis of this the brushless DC motor as application is selected because of reduction in losses and also the power. The PID control system is built to control the speed of the motor and gives the precise output. The universal bridge is used to amplify the current in the output of the application. PID controller reduces the error and increases the stability of the system.
Grid connected solar water pumping system Reddy, Mula Sreenivasa; Raja, Banda Srinivas; Kiranbabu, Movva Naga Venkata; Parvez, Muzammil; Inthiyaz, Syed; Prakash, Nelaturi Nanda; Rajanna, Bodapati Venkata; Surendher, Guntukala
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp412-420

Abstract

A grid-connected solar water pumping system (SWPS) uses solar power to pump water while simultaneously drawing power from the grid when necessary. These systems can benefit farmers in a variety of ways, including reliable power, lower electric bills, increased income, and improved economic viability. This study explores a solar photovoltaic (SPV) water pumping system designed to function with a single-phase distribution network. It utilizes an induction motor drive (IMD) and incorporates an advanced power-sharing technique for optimal performance. In addition to transferring power from SPV to IMD, a DC-DC boost converter functions as a grid interface and power factor adjustment device. Maximizing the power extracted from the SPV array is critical for optimizing its utilization. To do this, a control mechanism based on incremental conductance is implemented to track maximum power points. Simultaneously, the IMD connected to the power source inverter is regulated using a simple volt/frequency approach. The suggested system, which includes standalone, grid-interfaced, and mixed-mode situations, is developed and validated in a lab.
Solar-powered bidirectional charging of electric vehicle Karthik, Nachagari; Kallakunta, Ravi Kumar; Cheerla, Sreevardhan; Mohan, Kaja Krishna; Inthiyaz, Syed; Prakash, Nelaturi Nanda; Rajanna, Bodapati Venkata; Ahammad, Sk. Hasane
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp382-391

Abstract

Solar-powered bidirectional charging of an electric vehicle has three different modes of operation. The first mode of operation is “solar-powered electric vehicle charging” in which the vehicle is charged with solar energy. The second mode of operation is “grid-powered electric vehicle charging” which charges the vehicle in the absence of solar energy. The third mode of operation is “vehicle supplying to the grid” and in this mode, the vehicle energy is transferred back to the grid when there is demand to charge the other electric vehicles connected to the same grid. The system uses maximum power point tracking (MPPT) to improve power extraction from solar panels under standard test cell conditions, allowing for effective charging of electric cars. It also uses a proportional-integral (PI) controller to continually monitor the battery's state of charge (SOC). This controller modulates the duty cycle of pulse width modulation (PWM), which regulates the charging current. The charging system includes a buck-boost converter, which functions as a buck converter while supplying grid voltage to the vehicle, and a boost converter in supplying excess voltage of the vehicle to the grid. For three different modes of operation, the battery parameters such as voltage, current, and charging state are presented. The grid voltage and current are observed for the last two modes of operation.
Solar and battery input super boost DC–DC converter for solar powered electric vehicle Yadagiri, Aerpula; Talagadadeevi, Srinivasa Rao; Rao, Seetamraju Venkata Bala Subrahmanyeswara; Rao, Bitra Janardhana; Inthiyaz, Syed; Prakash, Nelaturi Nanda; Rajanna, Bodapati Venkata; Kumar, Cheeli Ashok
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp479-487

Abstract

The electric vehicle (EV) is increasingly emerging as an attractive solution to reduce reliance on fossil fuels in India. In commercial EVs, solar photovoltaic (PV) technology is employed both to charge the battery and power the vehicle. However, the conventional bidirectional DC-DC converter layout results in underutilization of solar PV power when the battery's state of charge (SOC) reaches maximum capacity. This work offers a unique dual input super boost (DISB) DC-DC converter designed specifically for solar-powered electric vehicles (EVs) to address the aforementioned challenge. The recently suggested converter operates in six different modes to effectively capture solar photovoltaic (PV) power. Notable benefits of this design include a wide range of speed control and fewer conduction devices in each mode, which eventually result in increased overall efficiency. An extensive analysis of the suggested DISB DC-DC converter is carried out by the study, encompassing detailed examination of operating waveforms and dynamic evaluations. Furthermore, the converter's performance and operation under the six different modes are verified through simulation.
Power quality enhancement for a grid connected wind turbine energy system with PMSG Rajasri, Kasula; Kiranbabu, Movva Naga Venkata; Raja, Banda Srinivas; Parvez, Muzammil; Reddy, Govulla Ravi Kumar; Prakash, Nelaturi Nanda; Ahammad, Sk. Hasane; Rajanna, Bodapati Venkata
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp392-400

Abstract

This project investigates the burgeoning potential of gearless wind turbine systems as a pivotal clean energy resource. Unlike conventional gearbox-based turbines, which grapple with issues like frequent breakdowns, intricate repairs, and prolonged downtimes, gearless systems present a suite of advantages. Chief among these is heightened reliability, diminished maintenance costs, and augmented efficiency. By circumventing the need for a gearbox, gearless turbines shed weight, bolster reliability, and demand less upkeep. The incorporation of permanent magnet generators further elevates their efficiency and renders them well-suited for offshore deployment. The emergence of gearless wind turbines heralds a promising frontier for effectively and efficiently harnessing wind power. Their streamlined design and robust performance potential position them as a transformative force in the renewable energy landscape, poised to catalyze substantial advancements towards sustainable energy goals. As research delves deeper into their capabilities and optimization, gearless turbines are poised to emerge as a cornerstone technology in the global pursuit of clean energy solutions.