Heriyanto, Heri
Universitas Sultan Ageng Tirtayasa

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

The Effect of Operating Conditions on the Purification of Waste Cooking Oil over a Natural Zeolite Catalyst Suhendi, Endang; Heriyanto, Heri; Nur Avina, Mely; Andriani, Kharina
World Chemical Engineering Journal VOLUME 6 NO. 1 JUNE 2022
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v6i1.15561

Abstract

The waste of cooking oil is a danger to human health. The Heating of waste cooking oil at high temperatures will cause an increase in free fatty acid (FFA) and peroxide number in the oil. Therefore, waste cooking oil needs to be processed before being reused. This paper studies the effect of operation conditions on the purification of waste cooking oil over a natural zeolite catalyst. The stage of the purification process is despicing, neutralization, and bleaching process. The despicing process injected the steam to remove impurities. The effect of the mass flow rate of oil at 1.051; 0.456 and 0.139 Kg/s on FFA value was studied. After that, the neutralization and bleaching process. The Bleaching process was performed using zeolite adsorbent. The results show that the purification method of waste cooking oil decreases of the color of oil, free fatty acid, and peroxide value.  In this study, the best performance of the despicing process at the mass flow rate of the oil is 0.139 Kg/s, a temperature of 60°C with 500 rpm stirring for the neutralization process and bleaching process of natural zeolite.  The value of free fatty acid content (FFA) is 2.22 mg. KOH/mg fat, peroxide is 6.98 mekO2/kg, color degradation is 66.93% and water content is 0.32% (w/w).
The Influence of Natural Bayah Zeolite on the Pyrolysis Process of Liquid Fuel Based on HDPE and PP Plastic Waste Heriyanto, Heri; Suhendi, Endang; Nasheh, Muhammad Yusril; Rizqillah, Muhammad Fathi; Wardalia, Wardalia; Pujiastuti, Hendrini
World Chemical Engineering Journal VOLUME 8 NO.1 JUNE 2024
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/wcej.v8i1.26617

Abstract

Pyrolysis is a decomposition reaction method involving the heating of a material with little or no oxygen. The objectives of this research are to utilize plastic waste for the production of liquid fuel and determine the optimal conditions for maximizing liquid fuel yield. The pyrolysis method was used at a temperature of 350°C for 300 minutes with High-Density Polyethylene (HDPE) and Polypropylene (PP) plastic as raw materials in composition variations of 7:3, 5:5, and 3:7, and the Bayah natural zeolite catalyst was activated and varied in amounts of 0%, 3%, and 5%. The analysis included yield tests, density tests, viscosity tests, calorific value tests, and the composition analysis of the liquid product yield.The results of this research indicated that the highest liquid product yield was obtained with a composition of 30% HDPE, 70% PP, and 0% catalyst, achieving a yield of 66.4%. It was concluded that the activated Bayah natural zeolite catalyst was not sufficiently effective in the pyrolysis process at a temperature of 300°C. The highest density and viscosity values were obtained with a composition of 70% HDPE, 30% PP, and 0% catalyst, which were 0.764 g/cm³ and 0.789 cP, respectively. The highest calorific value was obtained with a 50% HDPE and 50% PP composition, reaching 10,978.8 Cal/g. The composition analysis of the liquid product yield for a 70% HDPE and 30% PP composition resulted in 42% gasoline and 58% kerosene. For a 30% HDPE and 70% PP composition, the yield was 30% gasoline, 62% kerosene, and 8% diesel.
The effect of Temperature Drying of Seaweed, Addition of Calcium Hypochlorite, and Potassium Hydroxide on the Quality of Semi-Refined Carrageenan Products Heriyanto, Heri; Astria, Windi; Fattah, Hanif Al; Suhendi, Endang
World Chemical Engineering Journal VOLUME 7 NO. 2 DECEMBER 2023
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/wcej.v7i2.23042

Abstract

Indonesia is a major producer of Eucheuma cottonii seaweed, yet its utilization remains suboptimal. Approximately 80% of seaweed exports consist of raw materials with low market value. The research aims to enhance the quality and market value of seaweed by transforming it into semi-refined carrageenan products. The method used for carrageenan production involves extraction using a KOH solution with different concentration levels using 5%, 7.5%, and 10% (w/v), along with drying temperatures ranging from 80°C to 90°C. Additionally, bleaching treatment is applied using calcium hypochlorite with concentration level using 1.5% and 2.5% (w/v). The analyses conducted include water content, ash content, yield, viscosity, gel strength, and degree of whiteness. The optimal results for semi-refined carrageenan, based on yield analysis, water and ash content, gel strength, viscosity, and degree of whiteness, were obtained from samples with a KOH concentration of 10%, calcium hypochlorite concentration of 1.5%, and drying temperature of 80°C.
A review of encapsulation using emulsion crosslinking method Jayanudin, Jayanudin; Heriyanto, Heri
World Chemical Engineering Journal VOLUME 5 NO. 2 DECEMBER 2021
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v5i2.12312

Abstract

Encapsulation is a process to protect active components or other materials in the form of liquids, solids, and gases which are sensitive to the environment using coating materials. Encapsulation can be used for the pharmaceutical, food, beverage, textile, and other industries. The encapsulation method has been developed depending on the active ingredient being protected and its function. The encapsulation method is generally divided into chemical and mechanical methods. This review aims to explain the emulsion crosslinking which is one of the encapsulation methods. This method was easy and simple, just add a crosslink agent to the emulsion and then the microparticles formed were washed, filtered, and dried. This review also reports several encapsulation studies using the emulsion crosslinking method.
Eco-Friendly Transformation and Energy Efficiency in Methanol-to-Olefins (MTO) Processes: Innovations Toward Sustainable Olefin Production Heriyanto, Heri; Rochmat, Agus; Suhendi, Endang; Pujiastuti, Hendrini; Wardalia, Wardalia; Kanani, Nufus
World Chemical Engineering Journal VOLUME 8 NO. 2 DECEMBER 2024
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v8i2.30231

Abstract

Uncertainty regarding global crude oil prices has raised concerns for industry players, including the intermediate chemical industry such as olefins. The possibility of oil prices rising unpredictably makes the production of olefins from naphtha less attractive. On the other hand, abundant reserves of coal and natural gas are being considered as the foundation for developing the olefin industry based on gasification processes. The process routes include the formation of synthetic gas (SynGas) consisting of Hydrogen and Carbon Monoxide (H2 and CO), Methanol production from SynGas, and Olefin production from Methanol (MTO). This review aims to provide an overview of MTO and future developments related to the diversification of processes and technologies for the commercial production of olefins. Current research development on the Methanol-to-Olefins (MTO) process has narrowed down to three main areas, including: (1) Catalyst modification to increase reaction yield (particularly C2 and C3 products), (2) Determination of detailed reaction mechanisms in olefin formation, and (3) Catalyst deactivation processes in MTO.
Evaluating Emulsion Dynamics: The Role of Surfactants and Mixing Conditions in Non-Baffled Configurations Kanani, Nufus; Kustiningsih, Indar; Wardhono, Endarto Yudo; Wardalia, Wardalia; Heriyanto, Heri; Adiwibowo, Muhammad Triyogo; Rusdi, Rusdi; Hartono, Rudi; Demustila, Harly; Damayanti, Demietrya Renata Sashi; Maulida, Alyssa Shafira; Priyatna, Aufa Irsyad
World Chemical Engineering Journal VOLUME 8 NO. 2 DECEMBER 2024
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v8i2.30085

Abstract

The study investigates the impact of surfactant concentration and mixing time on the physical properties and stability of emulsions in non-baffle mixing systems. Surfactants, known for their ability to reduce interfacial tension, play a pivotal role in enhancing emulsion stability by promoting uniform droplet dispersion and reducing coalescence. Experiments were conducted using varying surfactant concentrations (0, 5, and 10 mL) to evaluate their effects on key parameters such as density, viscosity, Reynolds number, emulsion height, and stability over time. The results revealed that higher surfactant concentrations significantly improved emulsion uniformity and stability, with the 10 mL concentration yielding the most consistent outcomes. However, the absence of baffles introduced challenges, including prolonged mixing times and stratification tendencies, underscoring the need for optimized mixing configurations. These findings have practical implications for industries reliant on stable emulsions, highlighting the importance of balancing surfactant concentration and mixing dynamics to achieve efficient and cost-effective processes.
A REVIEW OF DEEP EUTECTIC SOLVENTS IN GREEN EXTRACTION OF CHITOSAN: COMPOSITION, EFFICIENCY, AND RECYCLABILITY Kanani, Nufus; Wardalia, Wardalia; Kustiningsih, Indar; Adiwibowo, Muhammad Triyogo; Rusdi, Rusdi; Hartono, Rudi; Heriyanto, Heri
JURNAL INTEGRASI PROSES Vol 14, No 1 (2025)
Publisher : JURNAL INTEGRASI PROSES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/jip.v14i1.32299

Abstract

Chitosan, a biopolymer derived from chitin-rich biomass such as crustacean shells, has garnered attention for its biodegradability, biocompatibility, and wide-ranging applications. However, conventional chemical extraction methods relying on strong acids and bases pose significant environmental and safety concerns, often leading to molecular degradation and low product quality. This study explores the use of deep eutectic solvents (DESs) as a green alternative for chitosan extraction. DESs, formed from combinations of hydrogen bond donors and acceptors, offer tunable properties, lower toxicity, and recyclability. The article highlights the structural advantages, extraction efficiency, and environmental benefits of DESs over conventional methods. It also examines the integration of process intensification technologies, such as microwave and ultrasound-assisted extraction, to enhance yield and reduce energy consumption. The findings underscore DESs’ potential to produce high-purity chitosan while supporting sustainability goals and industrial scalability, offering a viable pathway toward eco-friendly biopolymer processing.