Rusdi, Rusdi
Universitas Sultan Ageng Tirtayasa

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluating Emulsion Dynamics: The Role of Surfactants and Mixing Conditions in Non-Baffled Configurations Kanani, Nufus; Kustiningsih, Indar; Wardhono, Endarto Yudo; Wardalia, Wardalia; Heriyanto, Heri; Adiwibowo, Muhammad Triyogo; Rusdi, Rusdi; Hartono, Rudi; Demustila, Harly; Damayanti, Demietrya Renata Sashi; Maulida, Alyssa Shafira; Priyatna, Aufa Irsyad
World Chemical Engineering Journal VOLUME 8 NO. 2 DECEMBER 2024
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v8i2.30085

Abstract

The study investigates the impact of surfactant concentration and mixing time on the physical properties and stability of emulsions in non-baffle mixing systems. Surfactants, known for their ability to reduce interfacial tension, play a pivotal role in enhancing emulsion stability by promoting uniform droplet dispersion and reducing coalescence. Experiments were conducted using varying surfactant concentrations (0, 5, and 10 mL) to evaluate their effects on key parameters such as density, viscosity, Reynolds number, emulsion height, and stability over time. The results revealed that higher surfactant concentrations significantly improved emulsion uniformity and stability, with the 10 mL concentration yielding the most consistent outcomes. However, the absence of baffles introduced challenges, including prolonged mixing times and stratification tendencies, underscoring the need for optimized mixing configurations. These findings have practical implications for industries reliant on stable emulsions, highlighting the importance of balancing surfactant concentration and mixing dynamics to achieve efficient and cost-effective processes.
A REVIEW OF DEEP EUTECTIC SOLVENTS IN GREEN EXTRACTION OF CHITOSAN: COMPOSITION, EFFICIENCY, AND RECYCLABILITY Kanani, Nufus; Wardalia, Wardalia; Kustiningsih, Indar; Adiwibowo, Muhammad Triyogo; Rusdi, Rusdi; Hartono, Rudi; Heriyanto, Heri
JURNAL INTEGRASI PROSES Vol 14, No 1 (2025)
Publisher : JURNAL INTEGRASI PROSES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/jip.v14i1.32299

Abstract

Chitosan, a biopolymer derived from chitin-rich biomass such as crustacean shells, has garnered attention for its biodegradability, biocompatibility, and wide-ranging applications. However, conventional chemical extraction methods relying on strong acids and bases pose significant environmental and safety concerns, often leading to molecular degradation and low product quality. This study explores the use of deep eutectic solvents (DESs) as a green alternative for chitosan extraction. DESs, formed from combinations of hydrogen bond donors and acceptors, offer tunable properties, lower toxicity, and recyclability. The article highlights the structural advantages, extraction efficiency, and environmental benefits of DESs over conventional methods. It also examines the integration of process intensification technologies, such as microwave and ultrasound-assisted extraction, to enhance yield and reduce energy consumption. The findings underscore DESs’ potential to produce high-purity chitosan while supporting sustainability goals and industrial scalability, offering a viable pathway toward eco-friendly biopolymer processing.