Claim Missing Document
Check
Articles

Found 13 Documents
Search
Journal : Journal of Novel Engineering Science and Technology

Analysis on Wideband Channel Model for High Speed Wireless Communication Systems Mon, Myint Myint; Tun, Hla Myo; Win, Lei Lei Yin; Win, Thanda; Aye, Mya Mya; Soe, Khaing Thandar; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 01 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i01.803

Abstract

The paper emphasizes on the analysis on wideband channel model for high speed wireless communication systems. The research problem in this study are based on the following concepts such as (i) Firstly, it is necessary to change to the appropriate physical devices that can support 5G system, (ii) It is required to design a channel that will adapt to the medium that will be convenient for the changed physical devices, and (iii) Mobile terminals that currently use 4G cannot be used in 5G system. The objectives in this study are - to analyze the existing channel model for mobile communication, to analyze the mathematical and dynamical model for wireless propagation channel, to implement the wireless propagation channel with specific purposes, to implement the optimized channel model performance, and to evaluate the performance of the developed channel design. The numerical analyses in this study are conducted by using MATLAB language. The research direction in this study are based on the channel system functions, and tapped delay-line models. The simulation results are confirmed that the 12 taps in this study for the high speed wireless communication system design.
Physical Characteristics Analysis on Intelligent Reflecting Surface for High Speed Telecommunication Networks Su Win, Naw Aye Myat Su; Tun, Hla Myo; Win, Lei Lei Yin; Win, Thanda; Aye, Mya Mya; Win, Khin Kyu Kyu; Soe, Khaing Thandar; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 02 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i02.804

Abstract

The paper mainly focuses on the physical characteristics analysis of an intelligent reflecting surface for high-speed telecommunication networks. The research problem in this study are (i) To overcome the bottleneck, a novel transmission scheme, named hybrid reflection modulation (HRM) must be considered, exploiting both active and passive reflecting elements at the RIS and their combinations, which enables to convey information without using any radio frequency (RF) chains, (ii) In the HRM scheme, the active reflecting elements using additional power amplifiers can be able to amplify and reflect the incoming signal, while the remaining passive elements can reflect the signals with appropriate phase shifts, (iii) Based on this novel transmission model, we will observe an upper bound for the average bit error probability (ABEP), and derive achievable rate of the system using an information theoretic approach, and (iv) Moreover, comprehensive computer simulations could be performed to prove the superiority of the proposed HRM scheme over existing fully passive, fully active and reflection modulation (RM) systems. The research directions are as follows: (i) Implementing the Intelligent Reflecting Surfaces (IRS) and Hybrid Reflection Modulation Technologies for 6G Wireless Communication, (ii) Implementing the Intelligent Reflecting Surfaces (IRS) and Hybrid Reflection Modulation Technologies with physical layer security techniques, and (iii) Modelling the mathematical equation for optimization design of IRS system. There are two portions in this study. The first is designing the signal model in the IRS surface with specific physical parameters. The second one is an analysis of the capacity of point-to-point MIMO channels.  The analyses are conducted using by MATLAB language. The results confirm the performance specification of the IRS system for high-speed telecommunication applications.
Channel Coding Analysis for High-Speed Telecommunication System Saw, Khin; Yin Win, Lei Lei; Myo Tun, Hla; Win, Thanda; Aye, Mya Mya; Kyu Kyu Win, Khin; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 03 (2025): Forthcoming Issue - Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i03.820

Abstract

The paper mainly focuses on the channel coding design for high-speed telecommunication systems. The challenging issues in this study are based on (1) the growing demand for high data speed and an increase in subscribers, and (2) high-speed telecommunication networks allow users to avoid them due to better speed and more bandwidth. The objectives of this study are (1) to obtain a higher data rate, higher spectral efficiency, higher throughput, higher bandwidth, and higher energy efficiency at lower latency and (2) to detect/correct errors caused when information is transmitted through noisy channels. Therefore, high-speed telecommunication channel coding techniques will play a major role in achieving fast communication with minimum errors. The linear block and turbo codes are fundamental to analyzing the channel coding scheme for specific purposes. Theoretical concepts with numerical simulation are used to conduct the analyses. The simulation results on BER analyses confirm that the performance criteria could be met with real-world applications.