Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementing trajectory correction strategy through model prediction control for flight vehicle missions Irwanto, Herma Yudhi; Yusgiantoro, Purnomo; Abidin Sahabuddin, Zainal; Oktovianus Bura, Romie; Andiarti, Rika; Eko Putro, Idris; Sudiana, Oka; Hanif, Azizul
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7798

Abstract

Modeling a high-speed flying vehicle is imperative to ensure the success of vehicle development missions. Moreover, adherence to research protocols mandates a stepwise approach to testing the vehicle model, encompassing simulation trials using software-in-the-loop simulation (SILS), hardware-in-the-loop simulation (HILS), as well as diverse ground and environmental tests prior to flight testing. This study entailed a collaborative effort between MATLAB/Simulink and LabVIEW to seamlessly integrate the model developed in MATLAB/Simulink into LabVIEW for the implementation of model predictive control (MPC) strategy, aimed at trajectory correction (TC) missions for the vehicle. This MPC strategy was directly applied to the onboard flight control system (OBFCS) of the vehicle. Simulation results indicate the successful control of roll and pitch conditions by OBFCS in both SILS and HILS, ensuring the maintenance of flight conditions in accordance with predicted trajectories despite the presence of simulated disturbances. Notably, the simulation demonstrates the independence or absence of interference between each simultaneous MPC control for roll and pitch adjustments.
Stress Analysis of Load Cell Adaptor Designs For The Caliber450mm Solid Rocket Motor Static Test Moranova, Starida; Putro, Idris Eko; Abrizal, Haryadi; Mariani, Lilis; Prianto, Bayu; Hanif, Azizul; Andiarti, Rika; Ekadj, Firza Fadlan
Indonesian Journal of Aerospace Vol. 21 No. 2 (2023): Indonesian Journal Of Aerospace
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/ijoa.2023.2669

Abstract

This study presents a structural analysis of two load cell adaptor designs for a caliber-450 mm solid rocket motor. The structural analysis of a C-shape load cell adaptor and the newly designed truncated-cone shape is presented incorporates a 30-degree truncated disc section and varies the thickness to 30 mm, 25 mm, and 20 mm. The numerical simulation using PATRAN reveals that by altering the arm thickness while maintaining the constant hinge thickness, the 30 mm thickness in the disc section yields the best local maximum stress. However, considering the global maximum stress, the 25 mm thickness emerges as the optimal design. The simulation results show that the 25 mm disc section of the load cell adaptor surpasses the aerospace standard safety factor (SF = 1.5) for both local and global maximum stress.