Claim Missing Document
Check
Articles

Found 2 Documents
Search

Model Predictive Control in Hardware in the Loop Simulation for the OnBoard Attitude Determination Control System Irwanto, Herma Yudhi; Yusgiantoro, Purnomo; Sahabuddin, Zainal Abidin; Bura, Romie O.; Artono, Endro; Hakim, Arif Nur; Nuryadi, Ratno; Andiarti, Rika; Mariani, Lilis
Journal of Robotics and Control (JRC) Vol 5, No 2 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i2.21613

Abstract

Rocket flight tests invariably serve a purpose, one of which involves area monitoring or aerial photography. Consequently, the rocket necessitates the installation of a camera that remains consistently oriented toward the Earth's surface throughout its trajectory. Thus, ensuring the rocket's stability and preventing any rotation becomes imperative. To achieve this, the Onboard Attitude Determination Control System (OADCS) was researched and developed, fully controlled by NI myRIO with Labview as the programming language, ensures the rocket's attitude control and maintains a rolling angle of 0 degrees during flight. The MyRIO oversees the retrieval of attitude and position data from the X-Plane flight simulator, offering feedback through actuator control. The development of the OADCS proceeded incrementally through stages utilizing the Software in the Loop Simulation (SILS) and Hardware in the Loop Simulation (HILS) techniques, to ensure the verification of the system's functionality before its application to the rocket for real flight testing. In the OADCS control scheme, Model Predictive Control (MPC) is chosen, and it is compared with a PID controller to serve as a benchmark for processing speed. Because the rocket's flight time is short and its speeds of up to Mach 4. The simulation results indicate that MPC can halt the rocket's rotation 12 times more rapidly than PID control. Additionally, the MPC's ability to maintain a zero-degree rotation can persist throughout the rocket's flight time. Employing SILS and HILS enhances the OADCS rocket development process by incorporating MPC, which holds promise for application in real rockets.
Implementing trajectory correction strategy through model prediction control for flight vehicle missions Irwanto, Herma Yudhi; Yusgiantoro, Purnomo; Abidin Sahabuddin, Zainal; Oktovianus Bura, Romie; Andiarti, Rika; Eko Putro, Idris; Sudiana, Oka; Hanif, Azizul
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7798

Abstract

Modeling a high-speed flying vehicle is imperative to ensure the success of vehicle development missions. Moreover, adherence to research protocols mandates a stepwise approach to testing the vehicle model, encompassing simulation trials using software-in-the-loop simulation (SILS), hardware-in-the-loop simulation (HILS), as well as diverse ground and environmental tests prior to flight testing. This study entailed a collaborative effort between MATLAB/Simulink and LabVIEW to seamlessly integrate the model developed in MATLAB/Simulink into LabVIEW for the implementation of model predictive control (MPC) strategy, aimed at trajectory correction (TC) missions for the vehicle. This MPC strategy was directly applied to the onboard flight control system (OBFCS) of the vehicle. Simulation results indicate the successful control of roll and pitch conditions by OBFCS in both SILS and HILS, ensuring the maintenance of flight conditions in accordance with predicted trajectories despite the presence of simulated disturbances. Notably, the simulation demonstrates the independence or absence of interference between each simultaneous MPC control for roll and pitch adjustments.