Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

A review on microstrip patch antenna for wireless communication systems at 3.5 GHz Rana, Md. Sohel; Chakrobortty, Paris; Pal, Sourav; Rahman, Md. Mahmudur; Sarker, Arpon; Saha, Pranto; Rahman, Sohanur
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.5941

Abstract

This article presents a review of several microstrip patch antennas for 3.5 GHz wireless applications. Different substrate materials, FR-4 (loss), FR-4 Epoxy, Rogers RT/droid 5880, TLC-30, and Rogers RT/droid 5880 LZ, are used. In recent years, wireless antenna applications have increased, including biomedical appliances, internet of things (IoT) terminals, edge devices, radars, mobile phones, and many more. In this work, several articles were reviewed and investigated, and several microstrip patch antennas with a resonance frequency of 3.5 GHz were designed using different substrate materials and shapes. This article also discussed the geometric shapes of antennas, antenna properties, sizes of substrate materials, loss tangent, thickness, return loss, bandwidth, voltage standing wave ratio (VSWR), gain, efficiency, and directivity. Several software is used for design and simulation, including computer simulation technology (CST), high-frequency simulation frequency (HFSS), and advanced design system (ADS), FEKO, and MATLAB. The main goal of this paper is to talk about different wireless application papers that work in the S-band at a frequency of 3.5 GHz and have been published in various international journals and conferences.
Microstrip patch antenna design and simulation for S-band wireless applications operating at 3.5 GHz Rana, Md. Sohel; Fahim, Tahasin Ahmed; Ghosh, Bithe; Rahman, Md. Mostafizur
Bulletin of Electrical Engineering and Informatics Vol 12, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i6.5626

Abstract

In the modern world, wireless technology is one way to send information from one place to another. This technology is getting better and better with time, which significantly impacts the activities that make up daily living. This wireless application has the most impact on mobile and other technologies. This research paper shows the design and analysis of a 3.5 GHz microstrip patch antenna (MPA) for wireless applications. The substrate material is Roggers RT/duroid, which has a dielectric permittivity of 2.2 computer simulation technology (CST) software does antenna design and simulation. Some observed parameters are the S-parameter, antenna directivity gain, voltage standing wave ratio (VSWR), and bandwidth. From the simulation, the return loss, VSWR, directivity gain, and bandwidth are -50.4227, 1.0061, 7.43 dBi, and 122.1 MHz respectively. This study aims to find the best return loss, get the most directional gain, and get the VSWR closer to 1. When this antenna was used, the results were better than those in scientific journals and conferences. As a result, this antenna is anticipated to fulfill the requirements of various wireless communication applications effectively.
An Adam based CNN and LSTM approach for sign language recognition in real time for deaf people Kumer Paul, Subrata; Ala Walid, Md. Abul; Rani Paul, Rakhi; Uddin, Md. Jamal; Rana, Md. Sohel; Kumar Devnath, Maloy; Rahman Dipu, Ishaat; Haque, Md. Momenul
Bulletin of Electrical Engineering and Informatics Vol 13, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i1.6059

Abstract

Hand gestures and sign language are crucial modes of communication for deaf individuals. Since most people can't understand sign language, it's hard for a mute and an average person to talk to each other. Because of technological progress, computer vision and deep learning can now be used to count. This paper shows two ways to use deep knowledge to recognize sign language. These methods help regular people understand sign language and improve their communication. Based on American sign language (ASL), two separate datasets have been constructed; the first has 26 signs, and the other contains three significant symbols with the crucial sequence of frames or videos for regular communication. This study looks at three different models: the improved ResNet-based convolutional neural network (CNN), the long short-term memory (LSTM), and the gated recurrent unit (GRU). The first dataset is used to fit and assess the CNN model. With the adaptive moment estimation (Adam) optimizer, CNN obtains an accuracy of 89.07%. In contrast, the second dataset is given to LSTM and GRU and a comparison has been conducted. LSTM does better than GRU in all classes. LSTM has a 94.3% accuracy, while GRU only manages 79.3%. Our preliminary models' real-time performance is also highlighted.
Optimization of a CH3NH3SnI3 based lead-free organic perovskite solar cell using SCAPS-1D simulator Rana, Md. Sohel; Abdur Razzak, Md.
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7333

Abstract

In this study, a CH3NH3SnI3-based perovskite PV cell with the structure (FTO/TiO2/CH3NH3SnI3/Cu2O) was made and optimized by changing the layer thickness, defect density, and doping profile using the solar cell capacitance simulator (SCAPS) 1D simulator. To better understand how the device interface affects carrier dynamics, a synergic optimization of the device is done by altering the electron-transport layer (ETL) and hole-transport layer (HTL) materials. The light glows through the window layer of Sn2O: F, which serves as the transparent conducting oxide layer in our suggested cell construction and then travels over TiO2 as an n-type ETL. Due to its unique features, the p-type perovskite (CH3NH3SnI3) is chosen as the primary absorber layer. Lastly, Cu2O is added as an HTL before the back contact because it has a higher hole conductivity and the proper offsets for spreading the valance and conduction bands. Additionally, Cu2O-based devices outperform frequently utilized spiro-OMeTAD-based devices in terms of efficiency. According to the findings of these simulations, the optimized structure has a power conversion efficiency (PCE) of 41%, an open-circuit voltage of 1.32 V, a short-circuit current density of 34.31 mA/cm2 and a fill factor (FF) of 90.5%. Additionally, the optimized structure has a short-circuit current density of 34.31 mA/cm2.