Claim Missing Document
Check
Articles

Found 3 Documents
Search

Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms Le, Thanh Tuan; Paramasivam, Prabhu; Adril, Elvis; Nguyen, Van Quy; Le, Minh Xuan; Duong, Minh Thai; Le, Huu Cuong; Nguyen, Anh Quan
International Journal of Renewable Energy Development Vol 13, No 4 (2024): July 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.60387

Abstract

This review article examines the revolutionary possibilities of machine learning (ML) and intelligent algorithms for enabling renewable energy, with an emphasis on the energy domains of solar, wind, biofuel, and biomass. Critical problems such as data variability, system inefficiencies, and predictive maintenance are addressed by the integration of ML in renewable energy systems. Machine learning improves solar irradiance prediction accuracy and maximizes photovoltaic system performance in the solar energy sector. ML algorithms help to generate electricity more reliably by enhancing wind speed forecasts and wind turbine efficiency. ML improves the efficiency of biofuel production by optimizing feedstock selection, process parameters, and yield forecasts. Similarly, ML models in biomass energy provide effective thermal conversion procedures and real-time process management, guaranteeing increased energy production and operational stability. Even with the enormous advantages, problems such as data quality, interpretability of the models, computing requirements, and integration with current systems still remain. Resolving these issues calls for interdisciplinary cooperation, developments in computer technology, and encouraging legislative frameworks. This study emphasizes the vital role of ML in promoting sustainable and efficient renewable energy systems by giving a thorough review of present ML applications in renewable energy, highlighting continuing problems, and outlining future prospects
Nanotechnology-based biodiesel: A comprehensive review on production, and utilization in diesel engine as a substitute of diesel fuel Le, Thanh Tuan; Tran, Minh Ho; Nguyen, Quang Chien; Le, Huu Cuong; Nguyen, Van Quy; Cao, Dao Nam; Paramasivam, Prabhu
International Journal of Renewable Energy Development Vol 13, No 3 (2024): May 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.60126

Abstract

As a sustainable replacement for fossil fuels, biodiesel is a game-changer in the energy sector. There is no strategy to minimize biodiesel's significance as a sustainable, clean fuel source in light of the increasing climate change and environmental sustainability concerns. Nevertheless, conventional biodiesel production methods often run into problems like inadequate conversion efficiency and inappropriate fuel properties, which impede their broad adoption. The revolutionary potential of nanotechnology to circumvent these limitations and revolutionize biodiesel consumption and production is explored in this review paper. There are new possibilities for improving biodiesel output and engine efficiency, thanks to nanotechnology, which can alter matter at the atomic and molecular levels. Using nano-catalysts, nano-emulsification processes, and nano-encapsulation procedures, researchers have made significant advances in improving biodiesel qualities such as stability, combustion efficiency, and viscosity. Through a comprehensive analysis of current literature and research data, this article elucidates the crucial role of nanotechnology in advancing biodiesel technology. By shedding light on the most current advancements, challenges, and potential future outcomes in nano-based biodiesel manufacturing and consumption, this review hopes to add to the growing corpus of knowledge in the field and inspire additional innovation. In conclusion, there is great hope for a sustainable energy future, increased economic growth, and reduced environmental impacts through the application of nanotechnology.  
Using hydrogen as potential fuel for internal combustion engines: A comprehensive assessment Long Huynh, Diep Ngoc; Nguyen, Thanh Hai; Nguyen, Duc Chuan; Vo, Anh Vu; Nguyen, Duy Tan; Nguyen, Van Quy; Le, Huu Cuong
International Journal of Renewable Energy Development Vol 14, No 1 (2025): January 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60707

Abstract

This comprehensive review explores the feasibility and potential of using hydrogen gas as a fuel for internal combustion engines, a topic of growing importance in the context of global efforts to reduce greenhouse gas emissions and transition towards sustainable energy sources. Hydrogen, known for its high energy content and clean combustion properties, presents a promising alternative to traditional fossil fuels. This paper examines the chemical properties of hydrogen and its benefits over conventional fuels, particularly focusing on the technological advancements and modifications required for compression ignition and spark ignition engines to efficiently utilize hydrogen. The review delves into the necessary engine design modification, fuel injection systems, combustion characteristics, and emission control technologies specific to both compression ignition and spark ignition engines. Furthermore, it addresses the environmental impacts, including reductions in greenhouse gases and other pollutants, and evaluates the economic implications, such as production costs and feasibility compared to other energy solutions. Key challenges associated with the storage, distribution, and safety of hydrogen are discussed, along with potential solutions and innovations currently under investigation. This paper aims to provide a thorough understanding of the current state of hydrogen as a promising fuel for internal combustion engines, guiding future research and development in this vital field.