Claim Missing Document
Check
Articles

Found 1 Documents
Search

Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms Le, Thanh Tuan; Paramasivam, Prabhu; Adril, Elvis; Nguyen, Van Quy; Le, Minh Xuan; Duong, Minh Thai; Le, Huu Cuong; Nguyen, Anh Quan
International Journal of Renewable Energy Development Vol 13, No 4 (2024): July 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.60387

Abstract

This review article examines the revolutionary possibilities of machine learning (ML) and intelligent algorithms for enabling renewable energy, with an emphasis on the energy domains of solar, wind, biofuel, and biomass. Critical problems such as data variability, system inefficiencies, and predictive maintenance are addressed by the integration of ML in renewable energy systems. Machine learning improves solar irradiance prediction accuracy and maximizes photovoltaic system performance in the solar energy sector. ML algorithms help to generate electricity more reliably by enhancing wind speed forecasts and wind turbine efficiency. ML improves the efficiency of biofuel production by optimizing feedstock selection, process parameters, and yield forecasts. Similarly, ML models in biomass energy provide effective thermal conversion procedures and real-time process management, guaranteeing increased energy production and operational stability. Even with the enormous advantages, problems such as data quality, interpretability of the models, computing requirements, and integration with current systems still remain. Resolving these issues calls for interdisciplinary cooperation, developments in computer technology, and encouraging legislative frameworks. This study emphasizes the vital role of ML in promoting sustainable and efficient renewable energy systems by giving a thorough review of present ML applications in renewable energy, highlighting continuing problems, and outlining future prospects