Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Fuzzy Systems and Control (JFSC)

Comparative Data Resample to Predict Subscription Services Attrition Using Tree-based Ensembles Okpor, Margaret Dumebi; Aghware, Fidelis Obukohwo; Akazue, Maureen Ifeanyi; Ojugo, Arnold Adimabua; Emordi, Frances Uche; Odiakaose, Christopher Chukwufunaya; Ako, Rita Erhovwo; Geteloma, Victor Ochuko; Binitie, Amaka Patience; Ejeh, Patrick Ogholuwarami
Journal of Fuzzy Systems and Control Vol. 2 No. 2 (2024): Vol. 2, No. 2, 2024
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v2i2.213

Abstract

The digital market today, is rippled with a variety of goods/services that promote monetization and asset exchange with clients constantly seeking improved alternatives at lowered cost to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. Such strategies include the upgrade of goods and services at lesser cost and targeted improved value chains to meet client needs. These are found to improve client retention and better monetization. The study predicts customer churn via tree-based ensembles with data resampling such as the random-under-sample, synthetic minority oversample (SMOTE), and SMOTE-edited nearest neighbor (SMOTEEN). We chose three (3) tree-based ensembles namely: (a) decision tree, (b) random forest, and (c) extreme gradient boosting – to ensure we have single and ensemble classifier(s) to assess how well bagging and boosting modes perform on consumer churn prediction. With chi-square feature selection mode, the Decision tree model yields an accuracy of 0.9973, F1 of 0.9898, a precision of 0.9457, and a recall of 0.9698 respectively; while Random Forest yields an accuracy of 0.9973, F1 of 0.9898, precision 0.9457, and recall 0.9698 respectively. The XGBoost outperformed both Decision tree and Random Forest classifiers with an accuracy of 0.9984, F1 of 0.9945, Precision of 0.9616, and recall of 0.9890 respectively – which is attributed to its use of hyper-parameter tuning on its trees. We also note that SMOTEEN data balancing outperforms other data augment schemes with retention of a 30-day moratorium period for our adoption of the recency-frequency-monetization to improve monetization and keep business managers ahead of the consumer attrition curve.
Phishing Website Detection via a Transfer Learning based XGBoost Meta-learner with SMOTE-Tomek Agboi, Joy; Emordi, Frances Uche; Odiakaose, Christopher Chukwufunaya; Idama, Rebecca Okeoghene; Jumbo, Evans Fubara; Oweimieotu, Amanda Enaodona; Ezzeh, Peace Oguguo; Eboka, Andrew Okonji; Odoh, Anne; Ugbotu, Eferhire Valentine; Onoma, Paul Avwerosuoghene; Ojugo, Arnold Adimabua; Aghaunor, Tabitha Chukwudi; Binitie, Amaka Patience; Onochie, Christopher Chukwudi; Ejeh, Patrick Ogholuwarami; Nwozor, Blessing Uche
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.325

Abstract

The widespread proliferation of smartphones has advanced portability, data access ease, mobility, and other merits; it has also birthed adversarial targeting of network resources that seek to compromise unsuspecting user devices. Increased susceptibility was traced to user's personality, which renders them repeatedly vulnerable to exploits. Our study posits a stacked learning model to classify malicious lures used by adversaries on phishing websites. Our hybrid fuses 3-base learners (i.e. Genetic Algorithm, Random Forest, Modular Net) with its output sent as input to the XGBoost. The imbalanced dataset was resolved via SMOTE-Tomek with predictors selected using a relief rank feature selection. Our hybrid yields F1 0.995, Accuracy 1.000, Recall 0.998, Precision 1.000, MCC 1.000, and Specificity 1.000 – to accurately classify all 3,316 cases of its held-out test dataset. Results affirm that it outperformed benchmark ensembles. The study shows that our proposed model, as explored on the UCI Phishing Website dataset, effectively classified phishing (cues and lures) contents on websites.