Claim Missing Document
Check
Articles

Found 2 Documents
Search

BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange Oladele, James Kolapo; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Emordi, Frances Uchechukwu; Abere, Reuben Akporube; Nwozor, Blessing; Ejeh, Patrick Ogholuwarami; Geteloma, Victor Ochuko
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9509

Abstract

Blockchain platforms propagate into every facet, including managing medical services with professional and patient-centered applications. With its sensitive nature, record privacy has become imminent with medical services for patient diagnosis and treatments. The nature of medical records has continued to necessitate their availability, reachability, accessibility, security, mobility, and confidentiality. Challenges to these include authorized transfer of patient records on referral, security across platforms, content diversity, platform interoperability, etc. These, are today – demystified with blockchain-based apps, which proffers platform/application services to achieve data features associated with the nature of the records. We use a permissioned-blockchain for healthcare record management. Our choice of permission mode with a hyper-fabric ledger that uses a world-state on a peer-to-peer chain – is that its smart contracts do not require a complex algorithm to yield controlled transparency for users. Its actors include patients, practitioners, and health-related officers as users to create, retrieve, and store patient medical records and aid interoperability. With a population of 500, the system yields a transaction (query and https) response time of 0.56 seconds and 0.42 seconds, respectively. To cater to platform scalability and accessibility, the system yielded 0.78 seconds and 063 seconds, respectively, for 2500 users.
Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost Ako, Rita Erhovwo; Aghware, Fidelis Obukohwo; Okpor, Margaret Dumebi; Akazue, Maureen Ifeanyi; Yoro, Rume Elizabeth; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Odiakaose, Chris Chukwufunaya; Abere, Reuben Akporube; Emordi, Frances Uche; Geteloma, Victor Ochuko; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications Vol. 2 No. 1 (2024): JCTA 2(1) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10562

Abstract

Customer attrition has become the focus of many businesses today – since the online market space has continued to proffer customers, various choices and alternatives to goods, services, and products for their monies. Businesses must seek to improve value, meet customers' teething demands/needs, enhance their strategies toward customer retention, and better monetize. The study compares the effects of data resampling schemes on predicting customer churn for both Random Forest (RF) and XGBoost ensembles. Data resampling schemes used include: (a) default mode, (b) random-under-sampling RUS, (c) synthetic minority oversampling technique (SMOTE), and (d) SMOTE-edited nearest neighbor (SMOTEEN). Both tree-based ensembles were constructed and trained to assess how well they performed with the chi-square feature selection mode. The result shows that RF achieved F1 0.9898, Accuracy 0.9973, Precision 0.9457, and Recall 0.9698 for the default, RUS, SMOTE, and SMOTEEN resampling, respectively. Xgboost outperformed Random Forest with F1 0.9945, Accuracy 0.9984, Precision 0.9616, and Recall 0.9890 for the default, RUS, SMOTE, and SMOTEEN, respectively. Studies support that the use of SMOTEEN resampling outperforms other schemes; while, it attributed XGBoost enhanced performance to hyper-parameter tuning of its decision trees. Retention strategies of recency-frequency-monetization were used and have been found to curb churn and improve monetization policies that will place business managers ahead of the curve of churning by customers.