Claim Missing Document
Check
Articles

Found 2 Documents
Search

CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique Ojugo, Arnold Adimabua; Ejeh, Patrick Ogholuwarami; Akazue, Maureen Ifeanyi; Ashioba, Nwanze Chukwudi; Odiakaose, Christopher Chukwufunaya; Ako, Rita Erhovwo; Nwozor, Blessing; Emordi, Frances Uche
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9355

Abstract

Besides the inherent benefits of exchanging information and interactions between nodes on a social graph, they can also become a means for the propagation of knowledge. Social graphs have also become a veritable structure for the spread of disease outbreaks. These and its set of protocols are deployed as measures to curb its widespread effects as it has also left network experts puzzled. The recent lessons from the COVID-19 pandemic continue to reiterate that diseases will always be around. Nodal exposure, adoption/diffusion of disease(s) among interacting nodes vis-a-vis migration of nodes that cause further spread of contagion (concerning COVID-19 and other epidemics) has continued to leave experts bewildered towards rejigging set protocols. We model COVID-19 as a Markovian process with node targeting, propagation and recovery using migration-interaction as a threshold feat on a social graph. The migration-interaction design seeks to provision the graph with minimization and block of targeted diffusion of the contagion using seedset(s) nodes with a susceptible-infect policy. The study results showed that migration and interaction of nodes via the mobility approach have become an imperative factor that must be added when modeling the propagation of contagion or epidemics.
BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange Oladele, James Kolapo; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Emordi, Frances Uchechukwu; Abere, Reuben Akporube; Nwozor, Blessing; Ejeh, Patrick Ogholuwarami; Geteloma, Victor Ochuko
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9509

Abstract

Blockchain platforms propagate into every facet, including managing medical services with professional and patient-centered applications. With its sensitive nature, record privacy has become imminent with medical services for patient diagnosis and treatments. The nature of medical records has continued to necessitate their availability, reachability, accessibility, security, mobility, and confidentiality. Challenges to these include authorized transfer of patient records on referral, security across platforms, content diversity, platform interoperability, etc. These, are today – demystified with blockchain-based apps, which proffers platform/application services to achieve data features associated with the nature of the records. We use a permissioned-blockchain for healthcare record management. Our choice of permission mode with a hyper-fabric ledger that uses a world-state on a peer-to-peer chain – is that its smart contracts do not require a complex algorithm to yield controlled transparency for users. Its actors include patients, practitioners, and health-related officers as users to create, retrieve, and store patient medical records and aid interoperability. With a population of 500, the system yields a transaction (query and https) response time of 0.56 seconds and 0.42 seconds, respectively. To cater to platform scalability and accessibility, the system yielded 0.78 seconds and 063 seconds, respectively, for 2500 users.