Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pengaruh Pemberian Ekstrak Pacar Kuku (Lawsonia inermis L) Untuk Penyembuhan Luka Bakar Pada Mencit Putih Elfia, Linda; Abeiasa, M Saka; Humaira, Vilma; Rahmi, Fatihatur
Jurnal Medisains Kesehatan Vol. 3 No. 2 (2022): Jurnal Medisains Kesehatan
Publisher : Universitas Sumatera Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59963/jmk.v3i2.251

Abstract

Burns are injuries caused by direct contact or exposure of the body to sources of heat, chemicals, electricity and radiation. Burns not only cause damage to the skin but can also affect the body's system. Therefore, burns require special attention in handling. Lawsonia inermis L. is a plant that contains compounds that play a role in wound healing such as flavonoids, saponins and tannins. This study aims to determine whether there is an effect of henna leaf extract on healing burns. Nail henna leaf extract was made by maceration using 96% ethanol as solvent. This study used male mice as test animals which were divided into 5 groups, the positive control group was not given treatment, the negative control group was given vaseline flavum and 3 groups were given henna leaf extract with concentrations of 20%, 40% and 60%. Burns were made by using preheated solder for 5 minutes. The intervention was carried out once a day. The results of the statistical analysis of the One Way ANOVA test showed that the concentration of fast burn healing was 40%.
Penggunaan Metode Support Vector Machine (SVM) dalam Mengidentifikasi Tingkat Keparahan Pada Kecelakaan Lalu Lintas Rahmi, Fatihatur; Ferra Yanuar; Yudiantri Asdi
Statistika Vol. 24 No. 1 (2024): Statistika
Publisher : Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/statistika.v24i1.1690

Abstract

ABSTRAK Kendaraan sudah menjadi kebutuhan pokok yang digunakan semua orang untuk berpindah dari satu tempat ke tempat lain dengan cepat. Namun, bertambahnya jumlah kendaraan juga menimbulkan dampak negatif, salah satunya adalah kecelakaan. Berdasarkan data yang diperoleh dari website Badan Pusat Statistik (BPS) Sumatera Barat pada tahun 2018-2021, kasus kecelakaan terbanyak terjadi di Kota Padang yaitu sebesar 22,79% dari semua kasus kecelakaan yang terjadi di provinsi Sumatera Barat. Tingkat keparahan yang dialami korban pasca kecelakaan dikelompokkan kedalam 3 kategori yaitu korban yang mengalami luka ringan, luka berat dan meninggal dunia. Metode klasifikasi dapat digunakan untuk mengklasifikasi tingkat keparahan kecelakaan berdasarkan faktor-faktor yang mempengaruhi terjadinya kecelakaan. Salah satu metode yang dapat digunakan adalah metode Support Vector Machine (SVM). SVM adalah suatu learning machine yang digunakan untuk mengklasifikasi data secara statistika dalam ruang fitur berdimensi tinggi dan solusi yang dihasilkan dari klasifikasi menggunakan SVM bersifat sama untuk setiap percobaan yang dilakukan. Pada penelitian ini akan digunakan klasifikasi dengan SVM multiclass dengan metode one againts one (satu lawan satu) dengan dua fungsi kernel yang selanjutnya akan dilakukan perbandingan kualitas model berdasarkan akurasi, nilai APER dan F1-score. Data yang digunakan pada penelitian ini adalah data kecelakaan yang dialami pengendara sepeda motor di kota Padang pada bulan Januari-Maret 2022. Hasil penelitian menunjukkan bahwa penggunaan kernel RBF lebih baik dibanding kernel linear dengan tingkat akurasi sebesar 94,62% dengan nilai APER sebesar 5,38% dan diperoleh F1-score untuk kategori luka ringan sebesar 97,07%, luka berat sebesar 59,90% dan meninggal dunia sebesar 80%. ABSTRACT Transportation has become a basic necessity that everyone uses to move from one place to another quickly. However, the increasing number of transportation also has negative impacts, one of them was a traffic accident. According to BPS, the highest number of accidents occurred in Padang city, which was around 22.79% of the total cases that occurred in West Sumatra. The classification method can be used to classify the severity of accidents based on the factors that influence the occurrence of accidents. One method that can be used is the Support Vector Machine (SVM). SVM is a learning machine that is used to classify data statistically in a high-dimensional feature space and the solution resulting from classification using SVM is the same for every experiment carried out. In this research, multiclass SVM classification will be used with the one-against-one method with two kernel functions, then the model quality will be calculated based on accuracy, APER value and F1 score. The data used in this research is traffic accidents by motorcyclists in Padang City in January-March 2022. The results of the research show that the RBF kernel is better than the linear kernel with an accuracy level is 94.62%, an APER value is 5.38% and a F1-score for the minor injuries category is 97.07%, while serious injuries and deaths are 59.90% and 80%.