Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir

Magmatic Evolution of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Harijoko, Agung; Handini, Esti; Sukadana, I Gde; Syaeful, Heri; Ciputra, Roni Cahya; Rosianna, Ilsa; Indrastomo, Frederikus Dian; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol. 44 No. 1 (2023): MAY 2023
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6873

Abstract

Dago Volcano is a product of Miocene Sunda Arc volcanism located southeast of the capital city of Jakarta. The morphological change from flat lava flow to steeper lava morphology implies a process of magma evolution under Dago Volcano. This research provides an overview of the magma evolution that occurs on this volcano. The methods used include volcanostratigraphic analysis, petrographic analysis, mineral chemistry, and whole-rock geochemistry. The volcanostratigraphy of Dago Volcano is composed of two eruption centers and a flank eruption forming lava and cinder cones products. The mineralogical associations of Dago Volcano products include plagioclase, olivine, and clinopyroxene. The mineral textures of Dago edifices show zoning, sieve, and reaction rims textures. Geochemically, the Dago Volcano product has a magma affinity of med-K calc-alkaline with quite high levels of MgO, Ni, and Cr approaching the characteristics of primitive magma. The magma evolution process of Dago Volcano includes fractional crystallization and magma mixing which originates from the same magma source.
Radioactive Mineral Distribution on Tin Placer Deposits of Southeast Asia Tin Belt Granite in Bangka Island Ngadenin, Ngadenin; Sukadana, I Gde; Muhammad, Adi Gunawan; Indrastomo, Frederikus Dian; Rosianna, Ilsa; Ciputra, Roni Cahya; Adimedha, Tyto Baskara; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol. 44 No. 2 (2023): NOVEMBER 2023
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6969

Abstract

Bangka Island is an area rich in primary and secondary tin deposits. Tin deposits are formed around the contact between granite and older rocks, while secondary tin deposits are formed in the modern channels and paleochannels. Many previous researchers have researched radioactive minerals in primary tin deposits and modern channel deposits, but research on radioactive minerals in paleo channel deposits has never been carried out. The characterization of radioactive minerals in paleo channel deposits was done in this study to determine the potency of radioactive minerals in secondary tin deposits by comparing the content of radioactive minerals in paleochannels with modern channels and tin mine tailing deposits. The data used were mineralogical data and radioactivity data, along with the uranium and thorium content of the rocks from several previous studies. Data showed significant mineral content differences in paleo channel, modern channel, and tin mine tailings deposits. Mineral (monazite and zircon) content in tin mine tailing deposits was the highest. Source rocks for the radioactive minerals monazite and zircon are predicted to be the granitic rocks or tourmaline quartz veins of primary tin deposits. The radioactivity value of rocks in the paleo channel is relatively the same as the modern channel, ranging from 20 to 150 c/s. Uranium content in paleo channel is the same as modern channel deposits, ranging from 10 to 15 ppm eU. The thorium content of the rocks in the paleo channel ranges from 1 to 60 ppm eTh, while in the modern channel, it ranges from 1 to 45 ppm eTh. The radioactivity value and uranium content of the rocks are less effective for determining potential areas of radioactive minerals in placer tin deposits. In contrast, data on thorium content are quite effective for determining potential areas of radioactive minerals in placer tin deposits.
Characteristics and Genesis of Mount Pengki: A Scoria Cone of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Ciputra, Roni Cahya; Rosianna, Ilsa; Sukadana, I Gde; Harijoko, Agung; Handini, Esti; Pratiwi, Fadiah; Indrastomo, Frederikus Dian; Syaeful, Heri; Rachael, Yoshi; Sukmawan, I Gusti Made
EKSPLORIUM Vol. 45 No. 2 (2024): NOVEMBER 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.7131

Abstract

Scoria cones are a typical product of volcanic activity constructed by the bomb and lapilli-sized pyroclasts formed by Strombolian eruption. Mount Pengki is a scoria cone found in Miocene Dago Volcano, West Java. Mount Pengki was a remnant of a Miocene volcano that was exceptionally well preserved and exposed. This scoria cone contains layers of scoria beds and a lava flow unit. The study aims to characterize the exposed scoria bed deposits and investigate the eruptive history and degradation process of Mount Pengki. Field observation, including measured sections and detailed characterizations of the Mount Pengki quarry, allows us to observe its volcanic sequence from its internal structure toward the surface. Morphometric analysis of Mount Pengki can describe the degradation process undergone by the scoria cone. The early phase deposits were characterized by massive to weakly bedded, poorly sorted, clast-supported beds mainly composed of coarse lapilli to bombs/blocks scoria grain. The middle phase deposit typically shows well-stratified, well-sorted, clast-supported scoria beds with coarse ash to coarse lapilli grain size. The late phase deposit is similar to the middle phase deposit, with additional features of coarser-grain, reverse grading, and clast-supported lenticular beds. Eruptive mechanisms involved in the formation of Mount Pengki include ballistic transport of clasts, fallout deposition, and grain avalanching process. The degradation process was likely influenced by prolonged exposure to weathering, cone rim collapse, and regional deformation processes.