Claim Missing Document
Check
Articles

Found 15 Documents
Search

STUDI POTENSI TERBENTUKNYA CEBAKAN MINERAL RADIOAKTIF PADA BATUAN GRANITIK DI PULAU SULAWESI: THE STUDY ON THE POTENTIAL OF RADIOACTIVE MINERAL DEPOSITS FORMATION IN GRANITIC ROCKS IN SULAWESI ISLAND Ngadenin; Widodo; Fauzi, Rachman; Pratiwi, Fadiah
Buletin Sumber Daya Geologi Vol. 16 No. 3 (2021): Buletin Sumber Daya Geologi
Publisher : Pusat Sumber Daya Mineral Batubara dan Panas Bumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47599/bsdg.v16i3.331

Abstract

In the Island of Sulawesi, there are many granitic rocks which have potential for containing radioactive mineral deposits. The purpose of this study is to determine the type of radioactive mineral deposits based on radioactivity, uranium grade, and mineralogy characteristics of certain granitic rocks. The data used comprise radioactivity measurement, uranium content, megascopic and petrographic observations of rocks, and grain analysis of heavy mineral of granitic rocks from uranium exploration on the island of Sulawesi. The granitic rocks consist of granite, biotite granite, granodiorite, biotite granodiorite, hornblenda granodiorite, hornblenda biotite granodiorite, biotite hornblenda granodiorite, biotite adamelite, hornblenda biotite adamelite, biotite hornblenda diorite, diorite, biotite hornblenda diorite and syenite. The radioactivity of granitic rocks is 50 to 1,200 c/s and uranium content is 0.54 to 36 ppm. Radioactive minerals found in granitic rocks consist of zircon, monazite, alanite, thorite, and branerite. The potential occurrence of radioactive mineral deposits on the island of Sulawesi are placer-type thorium deposits at the modern deltas and coasts.
Distribution and Characteristics of Rare Earth Elements in Uranium-Ore Deposits from Rirang Area, West Kalimantan Province, Indonesia Adimedha, Tyto Baskara; Farenzo, Rayhan Aldizan; Sukadana, I Gde; Nugraheni, Rosmalia Dita; Pratiwi, Fadiah; Ciputra, Roni Cahya; Indrastomo, Frederikus Dian; Syaeful, Heri; Rachael, Yoshi
EKSPLORIUM Vol 45, No 1 (2024): May 2024
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.7058

Abstract

Uranium and rare earth elements (REE) are essential elements for the development of green environmentally friendly, and sustainable energy. To meet the increasing demand for these raw materials, Indonesia has taken steps to explore and map potential deposits, including the Rirang Sector in Melawi Regency, West Kalimantan. However, the available information on the mineralization of these elements in the area is limited. Therefore, this study aimed to provide a detailed characterization on the petrology and geochemical characteristics of uranium ore and to synthesize the mineral genesis of uranium and REE-bearing ore in the Rirang Sector. The analytical methods used included petrography, micro-XRF, and geochemical analysis. The results showed that uranium mineralization was present in brannerites, uranophane, and swamboite associated with tourmaline and monazite ore. Similarly, REE concentrations were hosted by REE-bearing minerals, such as monazite, xenotime, and loparite. Geochemically, the uranium concentration in the monazite ore ranged from 1,110 – 28,440 ppm, while the total REE (TREE) concentration varied between 85,320 to 138,488 ppm. The formation of uranium and REE mineralization were due to the metasomatism process and its association with the Na-rich fluid of felsic intrusion. Notably, the weathering process did not enrich uranium and REE content in the soil but rather decreased it due to the leaching process and the absence of clay minerals capable of absorbing the REE cations on the surface of clay crystal structures.
Radioactive Mineral Distribution on Tin Placer Deposits of Southeast Asia Tin Belt Granite in Bangka Island Ngadenin, Ngadenin; Sukadana, I Gde; Syaeful, Heri; Muhammad, Adi Gunawan; Indrastomo, Frederikus Dian; Rosianna, Ilsa; Ciputra, Roni Cahya; Adimedha, Tyto Baskara; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol 44, No 2 (2023): November 2023
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6969

Abstract

Bangka Island is an area rich in primary and secondary tin deposits. Tin deposits are formed around the contact between granite and older rocks, while secondary tin deposits are formed in the modern channels and paleochannels. Many previous researchers have researched radioactive minerals in primary tin deposits and modern channel deposits, but research on radioactive minerals in paleo channel deposits has never been carried out. The characterization of radioactive minerals in paleo channel deposits was done in this study to determine the potency of radioactive minerals in secondary tin deposits by comparing the content of radioactive minerals in paleochannels with modern channels and tin mine tailing deposits. The data used were mineralogical data and radioactivity data, along with the uranium and thorium content of the rocks from several previous studies. Data showed significant mineral content differences in paleo channel, modern channel, and tin mine tailings deposits. Mineral (monazite and zircon) content in tin mine tailing deposits was the highest. Source rocks for the radioactive minerals monazite and zircon are predicted to be the granitic rocks or tourmaline quartz veins of primary tin deposits. The radioactivity value of rocks in the paleo channel is relatively the same as the modern channel, ranging from 20 to 150 c/s. Uranium content in paleo channel is the same as modern channel deposits, ranging from 10 to 15 ppm eU. The thorium content of the rocks in the paleo channel ranges from 1 to 60 ppm eTh, while in the modern channel, it ranges from 1 to 45 ppm eTh. The radioactivity value and uranium content of the rocks are less effective for determining potential areas of radioactive minerals in placer tin deposits. In contrast, data on thorium content are quite effective for determining potential areas of radioactive minerals in placer tin deposits.
Magmatic Evolution of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Harijoko, Agung; Handini, Esti; Sukadana, I Gde; Syaeful, Heri; Ciputra, Roni Cahya; Rosianna, Ilsa; Indrastomo, Frederikus Dian; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol 44, No 1 (2023): May 2023
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6873

Abstract

Dago Volcano is a product of Miocene Sunda Arc volcanism located southeast of the capital city of Jakarta. The morphological change from flat lava flow to steeper lava morphology implies a process of magma evolution under Dago Volcano. This research provides an overview of the magma evolution that occurs on this volcano. The methods used include volcanostratigraphic analysis, petrographic analysis, mineral chemistry, and whole-rock geochemistry. The volcanostratigraphy of Dago Volcano is composed of two eruption centers and a flank eruption forming lava and cinder cones products. The mineralogical associations of Dago Volcano products include plagioclase, olivine, and clinopyroxene. The mineral textures of Dago edifices show zoning, sieve, and reaction rims textures. Geochemically, the Dago Volcano product has a magma affinity of med-K calc-alkaline with quite high levels of MgO, Ni, and Cr approaching the characteristics of primitive magma. The magma evolution process of Dago Volcano includes fractional crystallization and magma mixing which originates from the same magma source.
Characterization of Radioactive and Rare Earth Elements in Heavy Minerals from River Sediments in Marau Region, Ketapang, West Kalimantan Pratiwi, Fadiah; Rachael, Yoshi; Widodo, Widodo; Fauzi, Rachman; Madyaningarum, Nunik; Adimedha, Tyto Baskara; Indrastomo, Frederikus Dian; Sukadana, I Gde
EKSPLORIUM Vol 45, No 1 (2024): May 2024
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.6971

Abstract

Alluvium deposits from the Kendawangan River located in Marau, Ketapang, West Kalimantan have been known for their radioactive and rare earth mineral potential. In this paper, heavy minerals taken from alluvium deposits will be characterized to determine the elemental distribution of uranium, thorium, and rare earth elements in each mineral and their mineralogical composition. The samples are taken by panning and prepared using the flotation method to obtain heavy mineral concentrates. Geochemical analysis was carried out using a Bruker M4 Tornado plus Micro-XRF and continued with mineralogical analysis using AMICS (Advanced Mineral Identification and Characterization System) software. It was found that the distribution of heavy minerals from the sand samples was dominated by manganoan ilmenite, ilmenite, rutile, zircon, magnetite, and monazite, as well as thorite, cassiterite, xenotime, allanite, and other minerals in small quantities. Uranium, thorium, and rare earth elements are found in monazite, thorite, xenotime, zircon, and allanite.
Makassar Strait Thrust - Mamuju Segment (MSTM) Perspective on Radioactive Mineral Exploration: A Case Study in Rantedoda, Mamuju Ciputra, Roni Cahya; Pratiwi, Fadiah; Putra, Aldo Febriansyah; Syaeful, Heri; Indrastomo, Frederikus Dian; Adimedha, Tyto Baskara; Rachael, Yoshi; Sukadana, I Gde
Indonesian Journal on Geoscience Vol. 12 No. 3 (2025)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.12.3.319-341

Abstract

The Makassar Strait Thrust – Mamuju Segment (MSTM) is a key structural feature influencing uranium (U), thorium (Th), and rare earth element (REE) mineralization in Mamuju, West Sulawesi. This study explores the relationship between tectonic deformation, weathering processes, and mineralization, focusing on the Rantedoda sector. Integrated geomorphic, geological, radiometric, petrographic, and geochemical analyses reveal that MSTM faults act as conduits for hydrothermal fluids, promoting mineral mobilization, alteration, and enrichment in fault zones. MSTM produced curved NW ̶ SE to N ̶ S thrusts torn by NE ̶ SW right-lateral strike-slip faults in the studied area. Radiometric data highlight anisotropic distributions of U, Th, and dose rates aligned with NE ̶ SW and NW ̶ SE fault trends. Geochemical indices demonstrate that weathering is critical for REE and Th enrichment, as high eTh and low K values indicate. Moreover, fault-facilitated hydrothermal clay alteration supports U adsorption, as noted by high values of all radiometric parameters in the area near a fault. These findings establish the critical role of fault systems in controlling mineralization processes, providing a framework for targeted exploration strategies in tectonically complex terrains of the Mamuju area.
Tertiary Magmatism in Northwestern Kalimantan: Probability of Volcanic Hazard to The Nuclear Power Plant Site Candidate at Gosong Beach, Bengkayang Regency Pratiwi, Fadiah; Sukadana, I Gde; Draniswari, Windi Anartha; Ngadenin, Ngadenin; Adimedha, Tyto Baskara; Ciputra, Roni Cahya; Argianto, Ekky Novia Stasia; Aminarthi, Erwina; Supraba, Vertika Dhianda; Sunarko, Sunarko
Indonesian Journal on Geoscience Vol. 11 No. 2 (2024)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.11.2.231-249

Abstract

Gosong Beach in Bengkayang, West Kalimantan, is selected as a potential Nuclear Power Plant (NPP) site candidate. Volcanic and intrusive rocks are found in the radius of 150 km from it. Based on IAEA (International Atomic Energy Agency) standard, the main assessment target is volcanic rock that is younger than 10 Ma. However, there are Tertiary volcanic and intrusive rocks next to and cover a wide area around the NPP site that show volcanic activities over the Tertiary period. Therefore, it is necessary to investigate this group of rocks to understand its characteristics. This study aims to characterize the geochemistry and petrology of the Tertiary volcanic and intrusive rocks found in northwestern Kalimantan. The fieldwork was conducted to observe and to take Serantak volcanic rocks, Bawang dacite, Niut volcanics, and Sintang intrusion samples. The XRF and micro-XRF analyses were conducted to characterize the geochemical aspect, while petrography and AMICS analyses were conducted to characterize the mineralogical aspect. The result shows that Serantak volcanic rocks, Bawang dacite, Niut volcanics, and Sintang intrusion are derived from tholeiitic to calc-alkaline as a product of mantel partial melting in the subduction zone which go through fractional crystallization. The volcanic activity was initiated by the rise of primitive parental magma from partial melting in the shallow-depth subducted crust as indicated by the garnet-free HREE pattern, the enrichment of LILE and LREE, and the depleted HREE. The Tertiary magmatism in northwestern Kalimantan was found in a small activity with a small impact on the NPP candidate site at Gosong Beach, Bangkayang.
Nickel and Scandium-Bearing Minerals Associated with Limonitic Laterite Zone of the Lameruru Deposit in Southeast Sulawesi, Indonesia Supit, Jance Mudjani; Idrus, Arifudin; Petrus, Himawan Tri Bayu Murti; Sukadana, I Gde; Pratiwi, Fadiah
Indonesian Journal on Geoscience Vol. 12 No. 2 (2025)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.12.2.175-197

Abstract

This study investigates nickel and scandium enrichment within a laterite profile developed on ultramafic rocks in the Lameruru area, Southeast Sulawesi. Utilizing mineralogical and geochemical analyses, the research examines transformations from parent rock through four laterite horizons: rocky saprolite, earthy saprolite, yellow limonite, and red limonite. Results reveal distinct enrichment patterns for Ni and Sc. Nickel is concentrated in the saprolite, hosted by minerals such as willemseite, vermiculite, lizardite, and antigorite, and decreases towards the red limonite, suggesting an initial enrichment during weathering followed by remobilization. Conversely, Sc increases throughout the profile, peaking in the red limonite and dominantly associated with goethite. Nickel is structurally bound within mineral lattices, while scandium is adsorbed onto mineral surfaces, particularly goethite in the red limonite. This contrasting behaviour highlights different geochemical controls influencing Ni and Sc enrichment during lateritization. Further research should explore these mechanisms to optimize recovery strategies.
Distribution and Mineralogical Characteristic of Raya Volcanics, West Kalimantan Draniswari, Windi Anarta; Pratiwi, Fadiah; Ngadenin; Sukadana, I Gde; Adimedha, Tyto Baskara; Ciputra, Roni Cahya; Argianto, Ekky Novia Stasia; Aminarthi, Erwina; Supraba, Vertika Dhianda
EKSPLORIUM Vol. 42 No. 2 (2021): NOVEMBER 2021
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2021.42.2.6511

Abstract

There are several volcanic rocks in a radius of 150 km from where the Nuclear Power Plant (NPP) site project in West Kalimantan. The Mesozoic volcanic rocks have not been characterized for volcanic hazard evaluation purposes due to their old age. However, the distribution of Raya Volcanic Rocks that covers the site area and the wider area up to 150 kilometers from the site makes this rock group quite important to be characterized to find out how its activities in the past. This paper’s objective is to comprehend the distribution and characteristics of Raya Volcanic Rocks for NPP site volcanic hazard evaluation purposes. Fieldwork and lineament analyses were conducted to map and interpret the distribution of Raya Volcanic Rocks while mineralogical analysis using petrography and micro XRF were conducted to characterize the Raya Volcanic Rocks. The distribution of Raya Volcanic Rocks that relatively show NNW–SSE orientation is probably controlled by the NNW–SSE fault system. The analyses resulted that Raya Volcanic Rocks erupted as lava flows derived from mafic magma as a product of mantle partial melting that underwent crystal fractionation, injection of hotter/more Ca-rich magma, and magma mixing on an open-system magmatic process.
Distribution and Characteristics of Rare Earth Elements in Uranium-Ore Deposits from Rirang Area, West Kalimantan Province, Indonesia Adimedha, Tyto Baskara; Farenzo, Rayhan Aldizan; Sukadana, I Gde; Nugraheni, Rosmalia Dita; Pratiwi, Fadiah; Ciputra, Roni Cahya; Indrastomo, Frederikus Dian; Syaeful, Heri; Rachael, Yoshi
EKSPLORIUM Vol. 45 No. 1 (2024): MAY 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.7058

Abstract

Uranium and rare earth elements (REE) are essential elements for the development of green environmentally friendly, and sustainable energy. To meet the increasing demand for these raw materials, Indonesia has taken steps to explore and map potential deposits, including the Rirang Sector in Melawi Regency, West Kalimantan. However, the available information on the mineralization of these elements in the area is limited. Therefore, this study aimed to provide a detailed characterization on the petrology and geochemical characteristics of uranium ore and to synthesize the mineral genesis of uranium and REE-bearing ore in the Rirang Sector. The analytical methods used included petrography, micro-XRF, and geochemical analysis. The results showed that uranium mineralization was present in brannerites, uranophane, and swamboite associated with tourmaline and monazite ore. Similarly, REE concentrations were hosted by REE-bearing minerals, such as monazite, xenotime, and loparite. Geochemically, the uranium concentration in the monazite ore ranged from 1,110 – 28,440 ppm, while the total REE (TREE) concentration varied between 85,320 to 138,488 ppm. The formation of uranium and REE mineralization were due to the metasomatism process and its association with the Na-rich fluid of felsic intrusion. Notably, the weathering process did not enrich uranium and REE content in the soil but rather decreased it due to the leaching process and the absence of clay minerals capable of absorbing the REE cations on the surface of clay crystal structures.