Claim Missing Document
Check
Articles

Found 5 Documents
Search

Analisis SEM-PLS Perilaku Pasien HIV/AIDS terhadap Gambaran Klinis Pasien Hiariey, Arlene Henny; Upuy, Doms; Latupeirissa, Sanlly Joanne
Sustainable Vol 11 No 2 (2022): Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan
Publisher : Fakultas Teknik Universitas Maritim Raja Ali Haji

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31629/sustainable.v11i2.4937

Abstract

Structural Equation Modeling (SEM) is a method of multivariate statistical analysis that can describes the structure of a relatively complex relationships by engaging many of the variables. SEM-based on component or a variant called Partial Least Square (PLS), is a method that is more flexible and powerful in testing with free distribution assumptions, the scale of the indicator variety, and the number of samples must not be large. Specific problems in the case of HIV/AIDS can be seen through clinical overview sufferers HIV/AIDS, based on opportunistic infections CD4 levels, and quality of life. This research aims to get Structural Equation Model (SEM-PLS) clinical picture of HIV/AIDS patients. Secondary data were gathered and derived from the medical records of 150 patients with HIV/AIDS at the health centers of the Pasuruan Regency in 2017. The results of the analysis showed that the predisposing factors, enabling factors and strengthening factors influenced the clinical picture of HIV/AIDS patients. R2 produced by 0,8 so it can be conclude that model can explain data.
PENERAPAN METODE FUZZY C-MEANS UNTUK MEMPREDIKSI PERSEDIAAN OBAT SUHARDIN, ASKIN SYAFIYAH; UPUY, DOMS; HIARIEY, ARLENE HENNY
Parameter: Jurnal Matematika, Statistika dan Terapannya Vol 2 No 2 (2023): Parameter: Jurnal Matematika, Statistika dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/parameterv2i02pp155-160

Abstract

Pengklasteran adalah proses pengelompokan data ke dalam klaster berdasarkan parameter tertentu sehingga objek-objek dalam sebuah klaster memiliki tingkat kemiripan yang tinggi satu sama lain dan sangat tidak mirip dengan obyek yang lain pada klaster yang berbeda. Algoritma Fuzzy C-Means termasuk salah satu teknik pengklasteran data yang mana keberadaan pada setiap titik data dalam suatu klaster ditentukan oleh derajat keanggotaan. Dari analisis menggunakan Fuzzy C-Means dengan 3 cluster diperoleh fungsi objektif sebesar 21,1896, dimana cluster pertama 13 jenis obat, kedua 4 jenis obat dan ketia 3 jenis obat.
PERBANDINGAN METODE DOUBLE EXPONENTIAL SMOOTHING DAN TRIPLE EXPONENTIAL SMOOTHING DALAM MEMPREDIKSI TINGKAT KRIMINALITAS Candio, Syaifullah Adam; Hiariey, Arlene Henny; Djami, Ronald John
Parameter: Jurnal Matematika, Statistika dan Terapannya Vol 3 No 1 (2024): Parameter: Jurnal Matematika, Statistika dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/parameterv3i01pp49-60

Abstract

From 2010 to 2022, crime in Indonesia, especially Maluku Province, tends to increase compared to previous years. Considering these problems, a crime rate prediction system is needed so that the Maluku Provincial Police is able to estimate the quantity and type of crime that is likely to occur in the future. One of the prediction methods that has been used for crime prediction is Exponential Smoothing (ES). The Smoothing method is applied to obtain predictions based on time-series data. In this discussion, the author will compare the forecasting methods of Double Exponential Smoothing, and Triple Exponential Smoothing. The Double Exponential Smoothing method is suitable to be used to provide forecasting results when a data has a certain trend pattern. This Triple Exponential Smoothing method is used when there are still dominant expression elements &; seasonal conduite shown in the data. The MAPE value for the Double Exponential Smoothing method is 20.69552 and for the Triple Exponential Smoothing method is 30.48323, it can be said that the MAPE value of the Double Exponential Smoothing method is smaller than the Triple Exponential Smoothing method. So that the Double Exponential Smoothing method is more accurate than the Triple Exponential Smoothing method to predict the crime rate.
ANALISIS PERBANDINGAN METODE MAMDANI DAN SUGENO DALAM MENENTUKAN JUMLAH PENUMPANG KAPAL TANJUNG SOLEH RUTE AMBON –NAMLEA Papilaya, Netha; Hiariey, Arlene Henny; Luhukay, Martje; Upuy, Doms
Parameter: Jurnal Matematika, Statistika dan Terapannya Vol 3 No 2 (2024): Parameter: Jurnal Matematika, Statistika dan Terapannya
Publisher : Jurusan Matematika FMIPA Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/parameterv3i02pp107-114

Abstract

Penelitian ini untuk menentukan jumlah penumpang kapal Tanjung-Solehrute Ambon –Namleadimana pihak manajemen yang menangani penyeberangan penumpang dengan kapal tanjung soleh rute Ambon–Namleasering kali mengalami kendala dalam mengestimasi jumlah penumpang tiap musim oleh karena itu dilakukan pendekatan dengan logika fuzzy untukmenjadi solusi yang cocok untuk menghadapi ketidakpastian dan kompleksitas estimasijumlah penumpang pada kapal tanjung soleh tersebut.Adapun data diperoleh melalui pengamatan langsung di lapanganyang dilakukan padabulan Januari-Juni 2024. Penentuan jumlah penumpang merupakan permasalahan yang kompleks karena dipengaruhi oleh banyak faktor seperti waktu (liburan atau kerja) dan musim (hujan, panas,musim timur, musim barat). Penelitian ini mengembangkan dua metode logika fuzzy, yaitu metode Mamdani dam metode Sugeno. Berdasarkan nilai fuzzy mamdani dan fuzzy sugeno maka dilakukan perbandingan dengan data aktualnya yang diperoleh dari januari sampai bulan juni, terlihat bahwa dibulan januari-februari metode fuzzy sugeno lebih baik dari fuzzy mamdani karena jumlah penumpang yang diperoleh yaitu 320 dan 260 mendekati data aktual, sedangkan pada bulan maret kedua metode tersebut hampir mendekati data aktual. Pada bulan april fuzzy sugeno lebih baik dari mamdani dimana jumlah penumpang yaitu 710 sedangkan dari bulan mei-juni, fuzzy mamdani lebih baik dari sugeno. Maka secara keseluruhan untuk data ini, fuzzy sugeno lebih baik dari fuzzy mamdani.
Analysing influential factors in e-learning technology acceptance for digital learning effectiveness enhancement Sahusilawane, Wildoms; Hiariey, Lilian Sarah; Hiariey, Arlene Henny
Journal of Education and Learning (EduLearn) Vol 18, No 4: November 2024
Publisher : Intelektual Pustaka Media Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/edulearn.v18i4.21749

Abstract

This study aims to discover the factors that influence the acceptance of electronic learning media and its effect on the effectiveness of digital instruction. The study involved a learning management system and online tutorials using management system (MS) teams from various faculties at the Universitas Terbuka. These include the Faculty of Economics and Business, the Faculty of Teacher Training and Education, the Faculty of Science and Technology, and the Faculty of Law, Social Sciences, and Political Sciences. also conducted in three regional offices in Ambon, Gorontalo and Makassar, which were selected through purposive sampling. Primary data sources include participant questionnaires and interviews. Analytical methods include correlation and multiple regression analysis, with descriptive statistics used to summarize the dataset. Variable selection involves reliability and validity tests and classical assumption tests like multicollinearity. The F-test demonstrates a statistically significant and beneficial influence of utilizing e-learning media and individual ability, training, and intention to use it for digital learning success. The results of ttests and regression models provide empirical evidence supporting the significant effect of e-learning media and intention to use on the effectiveness of digital learning. However, variables related to training and ability do not show any significant influence.