Sapina, Nur
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Algoritma Decesion Tree C4.5 untuk Memprediksi Tingkat Kelangsungan Hidup Pasien Kanker Tiroid: The Application of C4.5 Decision Tree Algorithm for Predicting the Survival Rate of Thyroid Cancer Patients Putri, Adinda Dwi; Sholekhah, Fitriana; Dadynata, Eric; Efrizoni, Lusiana; Rahmaddeni, Rahmaddeni; Sapina, Nur
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 4 (2024): MALCOM October 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i4.1532

Abstract

Salah satu penyakit yang memiliki tingkat kelangsungan hidup yang bervariasi di antara pasien adalah kanker tiroid. Untuk memprediksi tingkat kelangsungan hidup pasien berdasarkan karakteristik klinis, penelitian ini menggunakan algoritma Decision Tree C4.5. Metode ini memanfaatkan pengolahan bahasa alami (NLP) dengan Count Vectorizer untuk mengubah teks menjadi data numerik. Dalam penilaian keakuratan prediksi, evaluasi dilakukan dengan matriks kebingungan (confusion matrix) untuk mengukur kinerja model dalam klasifikasi. Selain itu, Area Under Curve (AUC) juga dihitung untuk mengevaluasi performa model. Hasil eksperimen menunjukkan bahwa metode ini memberikan prediksi yang akurat tentang tingkat kelangsungan hidup pasien dengan kanker tiroid, mencapai akurasi sebesar 97% dan AUC sebesar 0.95, menunjukkan kinerja yang sangat baik. Penelitian ini penting untuk memperdalam pemahaman tentang penerapan Decision Tree dalam konteks medis dan potensi algoritma ini dalam mendukung pengambilan keputusan klinis di masa depan.
Analisis Faktor-Faktor yang Mempengaruhi Engagement Video di Platform TikTok Menggunakan Multiple Linear Regression: Analysis of Factors that Influence Video Engagement on the TikTok Platform Using the Multiple Linear Regression Algorithm Sapina, Nur; Nanda, Annisa; Arifin, Muhammad Amirul; Rahmaddeni, Rahmaddeni; Efrizoni, Lusiana
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.1987

Abstract

TikTok telah berkembang menjadi salah satu platform interaksi digital terkenal secara luas di seluruh dunia, yang memiliki lebih dari satu miliar orang pengguna aktif. Namun, sebagian video di TikTok memperoleh tingkat engagement yang tinggi meskipun menggunakan pendekatan konten yang serupa. Riset ini dimaksudkan untuk menelusuri unsur-unsur yang memberikan pengaruh terhadap engagement video di TikTok dengan menerapkan algoritma Regresi Linear Berganda. Variabel yang dianalisis meliputi durasi video, jumlah tayangan, komentar, like, share, dan download. Setelah melalui tahap preprocessing data, seleksi fitur, dan pengujian asumsi regresi, ditemukan bahwa video_like_count, video_share_count, dan video_download_count memiliki pengaruh paling signifikan terhadap jumlah tayangan. Hasil evaluasi model membuktikan bahwa model regresi menujukkan kinerja prediktif yang sangat baik, dengan nilai R² Squared sebesar 0,978, RMSE sebesar 0,0742, dan MSE sebesar 0,0055. Riset ini memberikan gambaran praktis kepada konten kreator dan konten marketing dalam merancang produksi konten yang lebih optimal. Model prediksi ini juga dapat dimanfaatkan untuk memperkirakan potensi engagement suatu video sebelum dipublikasikan.