Claim Missing Document
Check
Articles

Found 7 Documents
Search

Analisis Penugasan Agen terhadap Lokasi Nasabah Menggunakan Metode Vincenty Yanti, Wilda; Rachman, Fahrim Irhamna; Bakti, Rizki Yusliana
Arus Jurnal Sains dan Teknologi Vol 2 No 2: Oktober (2024)
Publisher : Arden Jaya Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dalam penelitian menggunakan pendekatan kuantitatif dengan menggunakan sistem pengujian White Box Testing. Metode analisis data adalah Teknik analisis data meliputi pencarian data, wawancara, catatan lapangan, pengumpulan data secara sistematis dari dokumen, pengorganisasian data ke dalam kategori, memecahnya menjadi unit-unit, melakukan compositing, Artinya proseses merakit dan memilih menjadi dua pola konversi. Buat kesimpulan tentang apa yang penting dan apa yang perlu dieksplorasi, dan untuk memudahkan anda dan orang lain untuk memahaminya. Hasil penelitian ini menunjukkan bahwa dalam proses analisis metode Vincenty, untuk distribusi pelanggan ke agen terdekat dari 11 agen, hanya ada 1 lokasi agen dengan persentase tertinggi atau yang paling banyak dihubungi oleh pelanggan, yaitu agen yang berada di Kel. Jenetallasa, Dari penelitian yang dilakukan, menghasilkan tingkat akurasi 97% dengan menghitung jarak antara agen dan pelanggan, menggunakan metode Vincenty dengan Google Maps.
Klasifikasi Tinggi Tanaman Jagung dengan Menggunakan Image dan Mobile Net Iskandar, Aryansyah; Rachman, Fahrim Irhamna; Bakti, Rizki Yusliana
Arus Jurnal Sains dan Teknologi Vol 2 No 2: Oktober (2024)
Publisher : Arden Jaya Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dengan berkembangnya teknologi di bidang pertanian, sistem untuk mendeteksi tinggi tanaman semakin mungkin dikembangkan. Salah satu tantangan utamanya adalah bagaimana mendeteksi dan mengklasifikasikan tinggi tanaman secara akurat menggunakan gambar dan algoritma MobileNet. Penelitian ini mengembangkan metode klasifikasi tinggi jagung menggunakan citra digital dan MobileNet, yang dipilih karena ringan, cepat, dan efisien, ideal untuk perangkat mobile dan embedded systems. Dalam pertanian presisi, pengukuran tinggi tanaman penting untuk menilai pertumbuhan dan kesehatan. Dataset gambar tanaman jagung dengan tinggi 20 cm, 50 cm, dan 110 cm digunakan untuk melatih dan menguji MobileNet, yang menunjukkan akurasi 95%. Evaluasi komputasi menunjukkan bahwa MobileNet cocok untuk aplikasi skala besar pada perangkat terbatas, dan berpotensi digunakan untuk pemantauan pertanian real-time guna meningkatkan produktivitas dan efisiensi.
Penerapan Algoritma Mobilenet Single Shot Detector Untuk Deteksi Api dan Asap Berpotensi Kebakaran Pada Citra Hutan Salam, Abd; Bakti, Rizki Yusliana; Lukman; Rachman, Fahrim Irhamna
Arus Jurnal Sains dan Teknologi Vol 2 No 2: Oktober (2024)
Publisher : Arden Jaya Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kebakaran hutan merupakan ancaman besar terhadap lingkungan, terutama di kawasan tropis seperti Indonesia. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem deteksi api dan asap berbasis algoritma MobileNet Single Shot Detector (SSD) pada citra hutan. Dataset terdiri dari citra api dan asap yang dikumpulkan dari Lereng Pegunungan Bawakaraeng, Kabupaten Gowa, Sulawesi Selatan. Hasil penelitian menunjukkan bahwa sistem ini mampu mendeteksi api dan asap dengan tingkat akurasi yang memadai, di mana nilai Mean Average Precision (mAP) mencapai 31,5% dan Average Recall sebesar 56,6%.
KLASIFIKASI SARAN DAN KRITIK PADA SIMAK UNISMUH DENGAN MENGGUNAKAN ALGORTIMA RECCURENCT NEURAL NETWORK (RNN faisal, Ahmad; Wahyuni, Titin; Rachman, Fahrim Irhamna
Ainet : Jurnal Informatika Vol 6, No 2 (2024): September (2024)
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/ainet.v6i2.15736

Abstract

SIMAK Unismuh Makassar merupakan platform penting yang digunakan oleh mahasiswa untuk menyampaikan saran dan kritik terkait berbagai aspek akademik. Dalam penelitian ini, peneliti mengimplementasikan algoritma Recurrent Neural Network (RNN) untuk mengklasifikasikan saran dan kritik yang diterima melalui SIMAK Unismuh. Tujuan dari penelitian ini adalah untuk mengetahui implementasi Algoritma RNN dalam mengklasifikasi saran dan kritik di laman SIMAK Unismuh dan bagaimana keberhasilan Algoritma RNN dalam mengklasifikasi saran dan kritik di laman SIMAK Unismuh. RNN dipilih karena kemampuannya dalam mengolah data teks yang berurutan, seperti masukan dalam bentuk kalimat, yang memungkinkan model untuk menangkap konteks dari masukan tersebut secara lebih efektif. Dataset yang digunakan dalam penelitian ini terdiri dari sejumlah data saran dan kritik yang telah dikategorikan secara manual. Model RNN yang dibangun kemudian dilatih dan diuji menggunakan data tersebut untuk menilai akurasi dan performanya. Hasil penelitian menunjukkan menunjukkan bahwa model mencapai akurasi tertinggi sebesar 91% dan akurasi terendah sebesar 90%. Meskipun terdapat variasi dalam performa model, hasil ini menunjukkan bahwa RNN memiliki potensi yang baik dalam mengklasifikasikan teks saran dan kritik. Model RNN dapat membantu institusi dalam memahami dan merespon masukan dari pengguna dengan lebih efektif, meskipun masih memerlukan optimasi lebih lanjut untuk meningkatkan konsistensi dan akurasi hasil. Kesimpulan dari penelitian ini menunjukkan bahwa model RNN mampu mengklasifikasikan saran dan kritik dengan tingkat akurasi yang memadai. Penerapan model ini diharapkan dapat membantu pihak administrasi Unismuh dalam mengelola masukan dari mahasiswa secara lebih efisien, serta memberikan respons yang lebih tepat dan cepat terhadap kebutuhan akademik.
Implementasi Perbaikan Ejaan Pada Web Semantik Ruang Baca Fakultas Teknik Dengan Menggunakan Algoritma Jaro-Winkler Distance Rachman, Fahrim Irhamna; Alam, Nur; Wahyuni, Titin; Anas, Lukman
Bianglala Informatika Vol 12, No 1 (2024): Bianglala Informatika 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/bi.v12i1.17727

Abstract

Penelitian ini bertujuan untuk menerapkan algoritma jaro-winkler distance pada sistem pencarian judul skripsi Ruang Baca Fakultas Teknik agar dapat mempermudah pengguna saat memasukkan kata yang tidak lengkap. Algoritma jaro-winkler distance merupakan algoritma yang digunakan untuk mengukur tingkat kesamaan dua string atau kata sehingga algoritma ini adalah pilihan yang tepat untuk pencarian kata pada judul skripsi yang tidak lengkap. Hasil penelitian menunjukkan kecepatan pencarian dengan memasukkan kata judul skripsi yang tidak lengkap membutuhkan waktu proses rata-rata 9926.75 ms per kata ini termasuk dengan proses jaro-winler distance yaitu perbaikan ejaan dan proses mencari sinonim dari kata tidak lengkap yang dimasukkan. Sehingga penerapan algoritma jaro-winkler distance dapat menyelesaikan masalah kesalahan ejaan kata pada pencarian judul skripsi.Kata Kunci : perbaikan ejaan; web semantik; algoritma jaro-winkler distance; jaro-distance;  jaro-winkler 
KLASIFIKASI SARAN DAN KRITIK PADA SIMAK UNISMUH DENGAN MENGGUNAKAN ALGORTIMA RECCURENCT NEURAL NETWORK (RNN faisal, Ahmad; Wahyuni, Titin; Rachman, Fahrim Irhamna
Ainet : Jurnal Informatika Vol. 6 No. 2 (2024): September (2024)
Publisher : Universitas Muhammadiyah Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26618/ainet.v6i2.15736

Abstract

SIMAK Unismuh Makassar merupakan platform penting yang digunakan oleh mahasiswa untuk menyampaikan saran dan kritik terkait berbagai aspek akademik. Dalam penelitian ini, peneliti mengimplementasikan algoritma Recurrent Neural Network (RNN) untuk mengklasifikasikan saran dan kritik yang diterima melalui SIMAK Unismuh. Tujuan dari penelitian ini adalah untuk mengetahui implementasi Algoritma RNN dalam mengklasifikasi saran dan kritik di laman SIMAK Unismuh dan bagaimana keberhasilan Algoritma RNN dalam mengklasifikasi saran dan kritik di laman SIMAK Unismuh. RNN dipilih karena kemampuannya dalam mengolah data teks yang berurutan, seperti masukan dalam bentuk kalimat, yang memungkinkan model untuk menangkap konteks dari masukan tersebut secara lebih efektif. Dataset yang digunakan dalam penelitian ini terdiri dari sejumlah data saran dan kritik yang telah dikategorikan secara manual. Model RNN yang dibangun kemudian dilatih dan diuji menggunakan data tersebut untuk menilai akurasi dan performanya. Hasil penelitian menunjukkan menunjukkan bahwa model mencapai akurasi tertinggi sebesar 91% dan akurasi terendah sebesar 90%. Meskipun terdapat variasi dalam performa model, hasil ini menunjukkan bahwa RNN memiliki potensi yang baik dalam mengklasifikasikan teks saran dan kritik. Model RNN dapat membantu institusi dalam memahami dan merespon masukan dari pengguna dengan lebih efektif, meskipun masih memerlukan optimasi lebih lanjut untuk meningkatkan konsistensi dan akurasi hasil. Kesimpulan dari penelitian ini menunjukkan bahwa model RNN mampu mengklasifikasikan saran dan kritik dengan tingkat akurasi yang memadai. Penerapan model ini diharapkan dapat membantu pihak administrasi Unismuh dalam mengelola masukan dari mahasiswa secara lebih efisien, serta memberikan respons yang lebih tepat dan cepat terhadap kebutuhan akademik.
IMPLEMENTASI METODE HYBRID FUZZY JARO WINKLER DAN COSINE SIMILARITY PADA SISTEM PENCARIAN AYAT AL-QURAN BERBASIS TRANSLITERASI LATIN Tahir, Gempar Perkasa; Habi Talib, Emil Agusalim; Rachman, Fahrim Irhamna
PROGRESS Vol 17 No 2 (2025): September
Publisher : P3M STMIK Profesional Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56708/progres.v17i2.482

Abstract

This research addresses the challenge of retrieving Qur’anic verses in Latin transliteration, which is hindered by the absence of a standardized orthography, leading to diverse spelling variations. The study aims to design and implement a hybrid information retrieval system that integrates Fuzzy Jaro-Winkler for lexical similarity and Cosine Similarity on fine-tuned DistilBERT embeddings for semantic relevance. The system workflow begins with preprocessing and normalization of the dataset, followed by initial candidate selection using Jaro-Winkler, and final reranking through semantic similarity scoring. Evaluation was conducted using black-box testing across scenarios including ideal queries, spelling variations, incomplete queries, and varying query lengths. Results show high accuracy for ideal (96%) and varied spelling queries (92%), with performance improving as query length increases, reaching 96% for four-word queries. The hybrid approach effectively bridges lexical and semantic gaps, outperforming single-method baselines, and demonstrates robustness in handling non-standard transliteration in Qur’anic text retrieval.