Claim Missing Document
Check
Articles

Found 3 Documents
Search

Aplikasi Teknologi Drone dan Pendekatan OBIA Dalam Studi Idenifikasi Habitat Perairan Dangkal Sewiko, Roni; Damayanti, Sania Pareka; Sagala, Herlina Adelina Meria Uli
Jurnal Kelautan Vol 17, No 2: Agustus (2024)
Publisher : Department of Marine Sciences, Trunojoyo University of Madura, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/jk.v17i2.22313

Abstract

ABSTRAKHabitat perairan dangkal memiliki peran penting dalam menjaga keseimbangan ekosistem laut dan mendukung keberlanjutan sumber daya perikanan. Namun, pemahaman dan pemantauan yang efektif terhadap habitat ini menjadi semakin krusial dalam menghadapi tantangan lingkungan yang semakin kompleks. Artikel ini mengungkapkan penelitian yang bertujuan untuk mengidentifikasi habitat perairan dangkal dengan memanfaatkan teknologi drone dan pendekatan Object-Based Image Analysis (OBIA). Inovasi utama dalam penelitian ini adalah penggunaan drone untuk pemetaan habitat perairan dangkal, yang menghadirkan metode yang lebih efisien dan akurat dibandingkan dengan survei konvensional. Metode OBIA digunakan dalam pengolahan data citra drone, dengan dukungan Ground Truth Habitat dan analisis algoritma SVM. Hasilnya, tingkat akurasi keseluruhan mencapai 77%, dengan tingkat akurasi tertinggi untuk Lamun sebesar 22,6% dan terendah untuk karang mati sebesar 4,1%. Penggunaan user's accuracy juga mencerminkan hasil yang bervariasi, dengan akurasi tertinggi untuk Lamun sebesar 91% dan terendah untuk karang mati sebesar 54%. Penelitian ini memberikan kontribusi penting dalam pemahaman lebih dalam tentang habitat perairan dangkal, memfasilitasi pemantauan yang lebih efektif, dan memberikan landasan untuk upaya konservasi lebih lanjut di ekosistem perairan dangkal.Kata Kunci: Drone, OBIA, penginderaan jauh, SIG, pesisirABSTRACTShallow water habitats play a crucial role in Maintaining marine ecosystem balance and supporting sustainable fisheries resources. However, effective understanding and monitoring of these habitats have become increasingly critical in the face of complex environmental challenges. This article unveils research aimed at identifying shallow water habitats using drone technology and an Object-Based Image Analysis (OBIA) approach. The primary innovation in this study lies in the utilization of drones for shallow water habitat mapping, presenting a more efficient and accurate method compared to conventional surveys. OBIA methods were employed in processing drone image data, supported by Ground Truth Habitat and SVM algorithm analysis. The overall accuracy reached 77%, with the highest accuracy rates for Seagrass at 22.6% and the lowest for Dead Coral at 4.1%. User's accuracy usage also reflected varied results, with the highest accuracy for Seagrass at 91% and the lowest for Dead Coral at 54%. This research makes a significant contribution to a deeper understanding of shallow water habitats, facilitating more effective monitoring and providing a foundation for further conservation efforts in shallow water ecosystems.Keywords: Drone, OBIA, remote sensing, GIS, coastal
THE USE OF DRONE AND VISIBLE ATMOSPHERICALLY RESISTANT INDEX (VARI) ALGORITHM IMPLEMENTATION IN MANGROVE ECOSYSTEM HEALTH’S MONITORING Sewiko, Roni; Sagala, Herlina Adelina Meria Uli
Asian Journal of Aquatic Sciences Vol. 5 No. 3 (2022): December
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/

Abstract

Operational limitations are the main problem in monitoring 3.31 million hectares of mangrove forest areas throughout Indonesia. However, with the disruption of technology, there are currently many approaches and methods that can be adapted to answer these problems. One of them is drone technology. This technology can be utilized in high-resolution rapid mapping for limited areas. The output from the data acquired by the drone can be analyzed for various purposes, including assessing the health condition of the vegetation. In this study, the results of the acquisition of unmanned aircraft on mangrove vegetation are used to determine the health level of vegetation in mangrove conservation areas. The research was conducted on 46 hectares of mangrove conservation area. The acquisition process was divided into four flying missions with a flight height of 150 m, 80% patching, and using the Hasselblad L1D-20c camera with a 1-inch sensor. The acquisition results are processed using the online photogrammetry method through the cloud-based photogrammetry service from DroneDeploy. Processing uses standard mode, where this mode is designed to produce good image quality with a relatively fast processing time. The acquisition results of 1614 photos were 100% successfully aligned, with 3.50 cm/px GSD resolution. Based on the application of the VARI algorithm to the resulting orthophoto, it is known that 30.2692% of the AOI is an area and/or dead or non-vegetated vegetation. Then 59.3887% is vegetation in an unhealthy condition, 10.3405% is considered as vegetation in healthy condition, and 0.0015% is vegetation in very healthy condition.
Identifikasi Spesies Mangrove dengan Menggunakan Sistem Pesawat Udara Kecil Tanpa Awak di Kawasan Ekosistem Mangrove Sedari, Kabupaten Karawang, Jawa Barat Sewiko, Roni; Sagala, Herlina Adelina Meria Uli; Yulandhita, Yulandhita; Pattirane, Chrisoetanto P.
Nekton Vol 2 No 2 (2022): October
Publisher : Politeknik Negeri Sambas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1888.493 KB) | DOI: 10.47767/nekton.v2i2.397

Abstract

Remote sensing is one of the effective methods of monitoring mangrove ecosystems. One of the challenges in implementing this method is image resolution. Access to large-resolution imagery as a basic material for spatial analysis is not cheap. Unmanned small aircraft systems (SPUKTA) or drones are able to answer these challenges. Orthophotos obtained from the acquisition of drones are capable of producing large-resolution imagery. This method is then implemented in conservation areas, to facilitate the process of identifying mangrove species in the area. The drone was flown at an altitude of 150 m with a pavement value of 85% for 4 flying missions. The result of processing 1614 aerial photos into orthophotos produced images with a GSD resolution of 4.75 cm/pix. These images are then analyzed with on-screen digitization techniques and visual interpretation. From the total area of the study area of 46.48 ha obtained the digitization results of Rhizophora sp. with a total area of 24.68 ha, Avicennia sp. 7.64 ha, dead mangroves 0.19 ha, and non-vegetation 13.97 ha.