Claim Missing Document
Check
Articles

Found 3 Documents
Search

Automated blood cancer detection models based on EfficientNet-B3 architecture and transfer learning Alshdaifat, Nawaf; Owida, Hamza Abu; Mustafa, Zaid; Aburomman, Ahmad; Abuowaida, Suhaila; Ibrahim, Abdullah; Alsharafat, Wafa
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1731-1738

Abstract

In blood smear images, there are difficulties in diagnosing blood cancer diseases like leukemia and lymphoma because of their various forms that appear in the human body. In this paper, a method for automatic detection of blood cancer is suggested that uses the EfficientNet-B3 architecture along with transfer learning techniques to improve accuracy and efficiency. We first fine-tuned the EfficientNet-B3 model, which was pre-trained on a large dataset consisting of annotated blood smear images, to capture pertinent features linked with blood malignant cells. To expedite the training process and adapt the model to our task, we use transfer learning. The proposed approach’s results from our experiments show that it outperforms traditional deep learning models and state-of-the-art methods in blood cancer detection. Additionally, with high precision and recall rates, this model also detects different types of blood cancers with robustness in its performance since its accuracy is over 99%. This means that when used together with the EfficientNet-B3 architecture, transfer learning can help the developed methods generalize among different types of blood cancers and conditions.
Artificial intelligence-driven method for the discovery and prevention of distributed denial of service attacks ALDabbas, Ashraf; Baniata, Laith H.; AlSaaidah, Bayan A.; Mustafa, Zaid; Alali, Muath; Rateb, Roqia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i1.pp614-628

Abstract

Distributed denial of service (DDoS) attacks has emerged as a prominent cyber threat in contemporary times. By impeding the machine's capacity to give services to legitimate clients, the impacted system performance and buffer size are reduced. Researchers are working to build sophisticated algorithms that can identify and thwart DDoS violations. An effective approach for DDoS attacks has been proposed in this work. This research presents a model as a potential explanation for DDoS assaults. In order to successfully identify this kind of attacks, which may stop or block the urgent and vital transmission of data, we present a distinctive method that integrates a pair of fully connected layers within an amalgamated deep learning (DL) framework with long short-term memory (LSTM) and a max pooling layer. The acquired accuracy reached 99.58%.
A novel convolutional neural network architecture for Alzheimer’s disease classification using magnetic resonance imaging data Abuowaida, Suhaila; Mustafa, Zaid; Aburomman, Ahmad; Alshdaifat, Nawaf; Iqtait, Musab
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp3519-3526

Abstract

Accurate categorization of Alzheimer’s disease is crucial for medical diagnosis and the development of therapeutic strategies. Deep learning models have shown significant potential in this endeavor; however, they often encounter difficulties due to the intricate and varied characteristics of Alzheimer’s disease. To address this difficulty, we suggest a new and innovative architecture for Alzheimer’s disease classification using magnetic resonance data. This design is named Res-BRNet and combines deep residual and boundary-based convolutional neural networks (CNNs). Res-BRNet utilizes a methodical fusion of boundary-focused procedures within adapted spatial and residual blocks. The spatial blocks retrieve information relating to uniformity, diversity, and boundaries of Alzheimer’s disease, although the residual blocks successfully capture texture differences at both local and global levels. We conducted a performance assessment of Res-BRNet. The Res-BRNet surpassed conventional CNN models, with outstanding levels of accuracy (99.22%). The findings indicate that Res-BRNet has promise as a tool for classifying Alzheimer’s disease, with the ability to enhance the precision and effectiveness of clinical diagnosis and treatment planning