Tangkawarow, Irene
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Seleksi Fitur untuk Optimasi Metode Klasifikasi k-NN pada Studi Kasus Penilaian Kinerja Karyawan Tangkawarow, Irene; Hostiadi, Dandy Pramana; Fatonah, Nenden Siti; Mohammad Yazdi; Hariyanti, Eva
Jurnal Sistem dan Informatika (JSI) Vol 18 No 1 (2023): Jurnal Sistem dan Informatika (JSI)
Publisher : Direktorat Penelitian,Pengabdian Masyarakat dan HKI - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v18i1.593

Abstract

Model Klasifikasi banyak digunakan dalam rangka menganalisis dan menemukan jenis kategori kelas data. Salah satu bentuk pemanfaatan metode klasifikasi adalah mengklasifikasikan hasil penilaian pengukuran kinerja karyawan. Metode klasifikasi yang umum dan dapat digunakan antara lain adalah metode Decision Tree, Naive Bayes, -NN dan Random Forest. Namun tidak semua metode dapat menghasilkan performa yang baik dalam penilaian kinerja Karyawan. Sehingga perlu dilakukan optimasi misalnya melalui penggunaan seleksi fitur. Beberapa penelitian telah dilakukan optimasi metode klasifikasi melalui penggunaan metode seleksi fitur dalam penilaian kinerja karyawan. Namun optimasi ini dipengaruhi oleh karakteristik data yang digunakan. Tidak semua teknik seleksi fitur sesuai untuk meningkatkan hasil klasifikasi dan jumlah penggunaan fitur dapat mempengaruhi performa model klasifikasi. Penelitian ini mengusulkan teknik analisis penggunaan jumlah fitur pada data kinerja dosen melalui metode seleksi fitur ANOVA untuk meningkatkan performa model klasifikasi metode -NN. Tujuannya adalah untuk mendapatkan jumlah fitur yang terbaik dalam peningkatan performa metode klasifikasi -NN. Hasil penelitian menunjukkan bahwa jumlah fitur terbaik dari metode ANOVA adalah sejumlah 5 fitur dengan hasil akurasi klasifikasi -NN sebesar 0.839, precision 0.8323, recall 0.839 dan F1-score 0.833. Teknik analisis ini dapat digunakan oleh sebuah perusahaan dalam mengutamakan fitur terbaik dalam menilai kualitas kinerja karyawannya.
Analisis Perbandingan Metode Seleksi Fitur pada Model Klasifikasi Decission Tree untuk Deteksi Serangan di Jaringan Komputer Hariyanti, Eva; Hostiadi, Dandy Pramana; Anggreni; Yohanes Priyo Atmojo; I Made Darma Susila; Tangkawarow, Irene
Jurnal Sistem dan Informatika (JSI) Vol 18 No 2 (2024): Jurnal Sistem dan Informatika (JSI)
Publisher : Direktorat Penelitian,Pengabdian Masyarakat dan HKI - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v18i2.615

Abstract

Perkembangan informasi dan teknologi memerlukan teknik pengamanan yang tepat. Potensi terjadinya kebocoran data dan informasi di era digital sangat tinggi apabila tidak ditangani dengan serius. Beberapa serangan berbahaya yang terjadi adalah spam, Denial of Service Attack, ARP Poisoning, SQL Injection, U2L, R2L dan Probing. Penelitian sebelumnya telah mengenalkan pendekatan deteksi serangan berbahaya seperti menggunakan klasifikasi, klusterisasi dan analisis statistik. Namun analisis penggunaan fitur terbaik perlu dilakukan untuk mendapatkan hasil model klasifikasi yang optimal. Pada penelitian ini, menganalisis dan mencari metode seleksi fitur terbaik yang dapat diimplementasikan pada model klasifikasi berbasis machine learning untuk mendeteksi serangan di jaringan. Dataset yang digunakan adalah UNSW-NB15, dan dilakukan beberapa proses seperti data transformasi, Data normalisasi, seleksi Fitur dan Klasifikasi. Perbandingan teknik seleksi fitur yang digunakan antara lain ANOVA, UNIVARIATE dan ChiSquare. Tujuan penelitian ini adalah untuk meningkatkan akurasi, precision dan recall pada model klasifikasi Decision Tree. Hasil penelitian pengujian menunjukkan bahwa metode seleksi fitur terbaik dalam model klasifikasi adalah metode ANOVA dengan hasil nilai Area Under Curve sebesar 0.989, nilai F1-score adalah 0.999, akurasi deteksi adalah 0.999, nilai precission adalah 0.999 dan recall adalah 0.999. Hasil penelitian ini dapat digunakan untuk menyempurnakan model Intrusi Detection System berbasis machine learning.