Nor, Elya Mohd
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Battery Condition Monitoring of Quadrotor UAV Using Machine Learning Classification Algorithm Binti Mohd Sabudin, Umi Syahirah; Makhtar, Siti Noormiza; Nor, Elya Mohd; Muhamed, Siti Anizah; Mohd Sani, Fareisya Zulaikha; Kamarudin, Nur Diyana
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2040

Abstract

Unmanned aerial vehicle flight performance and efficiency rely on various factors. Flight instabilities can happen due to malfunctions inside the system and disturbances from the external environment. Battery status plays a significant role in healthy flight conditions. A weak battery will affect the performance of propellers and motors, and the presence of wind disturbance can contribute towards inefficient flying capabilities. Therefore, investigation of fault at the early stage is crucial to maintain the great performance of the UAV. This paper aims to investigate the best prediction system from the existing machine learning algorithm such as Decision Tree (DT), Linear Discriminant (LD), Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Neural Network (NN) to classify the battery condition of the quadrotor by extracting the features from the displacement time series dataset. By using recorded flight data, it will be statistically analyzed to extract the flying condition features. The extracted features are the Euclidian distance (ED), speed, acceleration, Periodogram Power spectral density (PSD) and Fast Fourier Transform (FFT) of the signal. The result shows that the two best classifier algorithms are the Decision Tree and Neural Network models with training accuracy of 98% and 93% in Set A and B, respectively.