Fetty, Amelia Julia Tria
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

In Silico Study of Cladosporol and Its Acyl Derivatives as Anti-Breast Cancer Against Alpha-Estrogen Receptor Herdiansyah, Mochammad Aqilah; Ansori, Arif Nur Muhammad; Kharisma, Viol Dhea; Alifiansyah, Mochamad Radika Tory; Anggraini, Dhea; Priyono, Qiara Amelia Putri; Yusniasari, Putri Antika; Fetty, Amelia Julia Tria; Zainul, Rahadian; Rebezov, Maksim; Kolesnik, Evgeniy; Maksimiuk, Nikolai
Biosaintifika: Journal of Biology & Biology Education Vol. 16 No. 1 (2024): April 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/biosaintifika.v15i1.949

Abstract

Breast cancer is a chronic health problem that causes 690,000 deaths worldwide. The development of secondary metabolite compounds from natural preparations through an in silico approach is needed as a predictive tool to prevent breast cancer, one of them is cladosporol from Cladosporium spp. This study aims to utilize an in silico approach to predict the potential of cladosporol against alpha-estrogen receptors. The alpha-estrogen receptor with code 6CBZ was selected based on group function as pharmacophore in ligand-receptor interaction. The methods used in this study are by using an in silico approach with Molegro Virtual Docker (MVD) Ver 5.5 for the docking process and CABS-flex 2.0 for identifying the stability of the complexes. ADMET properties analysis was also performed to know the pharmacokinetics attributes of cladosporol. Based on research conducted, stated that cladosporol octanoate has the lowest rerank score with a -84.3593 value and the RMSD value is 1.195 Å so it’s valid for molecular docking. Exploration of cladosporol for anti-breast cancer from Cladosporium spp fungi can be a novelty for the development of future pharmaceutical research. Thus, the development of anti-cancer drugs for early prevention can be carried out to reduce the number of breast cancer cases worldwide.
CELLULOSE NANOCRYSTALS BASED ON PINEAPPLE LEAF FIBERS IN HEMOPERFUSION APPLICATIONS FOR CREATININE REMOVAL: BATCH METHOD ADSORPTION STUDY Raharjo, Yanuardi; Darmokoesoemo, Handoko; Fetty, Amelia Julia Tria; Aziz, Rizky Abdul; Salsabila, Fara; Ishma, Ervina Fadhilatul
Jurnal Kimia Riset Vol. 9 No. 2 (2024): December
Publisher : Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jkr.v9i2.65046

Abstract

Kidney failure is a major global cause of mortality, often resulting from the buildup of uremic toxins like creatinine. Creatinine serves as an indicator for assessing treatment needs in kidney failure patients. Hemoperfusion, a treatment based on the adsorption of toxins, has shown promise when using cellulose nanocrystals (CNCs) as adsorbents. CNCs derived from pineapple leaf fibers offer unique advantages due to their abundance of active sites, high adsorption capacity, and strong binding affinity. This study investigates the efficiency of CNCs in reducing creatinine levels, with the reduction attributed to the binding of creatinine to CNC hydroxyl groups. Characterization of CNCs was performed using PSA, XRD, FTIR, and SEM-EDX techniques, while the residual creatinine was quantified via UV-Vis spectrophotometry, utilizing a picric acid complex under alkaline conditions and measured at 485 nm. Optimal conditions were found with a stirring speed of 210 rpm, 120-minute contact time, and 10 mg/L creatinine concentration, resulting in an adsorption capacity (Qads) of 2.572 mg/g. The CNC adsorbent demonstrated hemocompatibility, with an APTT blood coagulation time of 31.3 seconds. These findings suggest that CNCs could be highly effective in developing safer, efficient hemoperfusion systems for managing kidney failure.