Claim Missing Document
Check
Articles

Found 1 Documents
Search

Molecular Vibration and Physicochemical Performance of Proton-Conducting Solid Polymer Electrolyte Membrane based on CMC/PVA/CH3COONH4 Ndruru, Sun Theo Constan Lotebulo; Rachmadhanti, Elvira Nur; Fridarima, Shanny; Berghuis, Nila Tanyela; Prasetyo, Ridho; Yulianti, Evi; Hayati, Atika Trisna; Adriana, Risda; Siregar, Rabiyatul Adawiyah; Sofyan, Muhammad Ihsan; Sampora, Yulianti; Annas, Dicky; Madiabu, Muhammad Jihad
Molekul Vol 19 No 3 (2024)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2024.19.3.11001

Abstract

This work studied examined the influence of ammonium acetate (CH3COONH4) on CMC/PVA-based solid polymer electrolyte (SPE) membranes, focusing on molecular vibration, proton conductivity, and physicochemical properties. SPE membranes were prepared via the casting solution method with varying CH3COONH4 concentrations to determine the optimal proton conductivity. Various characterizations, including FTIR, EIS, XRD, and TGA, were performed. The optimal membrane condition was achieved with 10 wt-% CH3COONH4 in the CMC/PVA (80/20) blend, yielding proton conductivity of 3.93×10⁻⁴ S/cm and favorable mechanical, thermal, and crystallinity properties, making it suitable for proton-conducting polymer applications. Keywords: ammonium acetate, carboxymethyl cellulose, ionic conductivity, poly(vinyl alcohol), proton battery, solid electrolyte membrane