Claim Missing Document
Check
Articles

Found 4 Documents
Search

PERENCANAAN ALOKASI CRANE DENGAN METODE PROMETHEE PADA PROYEK SHUTDOWN PABRIK Yaqin, Alvin Muhammad ‘Ainul; Novareza, Oyong; Yuniarti, Rahmi
Jurnal Rekayasa dan Manajemen Sistem Industri Vol 4, No 5 (2016)
Publisher : Program Studi Teknik Industri Fakultas Teknik Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jika membutuhkan abstrak atau isi jurnal silahkan menghubungi author melalui email alvinainulyaqin@gmail.com, novareza15@ub.ac.id, rahmi_yuniarti@ub.ac.id Terima kasih
Kegiatan Kegiatan Pendampingan Belajar Anak Tunagrahita di Yayasan Aulia Rahmah Hasanah Arini Anestesia Purba; Anis Rohmana Malik; Muhammad Imron Zamzani; Novita Lizza Anggraini; Alvin Muhammad’ Ainul Yaqin
Jurnal Abdi Masyarakat Indonesia Vol 2 No 6 (2022): JAMSI - November 2022
Publisher : CV Firmos

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54082/jamsi.496

Abstract

Tunagrahita merupakan anak-anak yang memiliki kemampuan intelektual dan kognitif yang berada di bawah rata-rata dibandingkan orang pada umumnya. Kondisi ini biasanya mulai terdeteksi ketika masih dalam usia dini. Anak-anak tunagrahita memiliki hambatan akademik khususnya dalam hal pemahaman yang lambat. Pengabdian masyarakat ini bertujuan untuk membantu anak-anak tuna grahita meningkatkan pemahaman terhadap pelajaran dasar. Metode yang dilakukan dalam mendukung pendidikan anak-anak tunagrahita adalah pendampingan belajar yaitu persiapan, pelaksanaan dan evaluasi. Pendampingan belajar dilakukan dengan pengajaran terhadap materi-materi dasar seperti menulis, membaca, menggambar, pengenalan terhadap tumbuhan dan hewan. Proses evaluasi dilakukan dengan memberikan pre test dan post test pada saat sebelum diberikan pendampingan belajar dan setelah diberikan pendampingan belajar. Hasil dari pendampingan belajar tunagrahita ini adalah peningkatan pemahaman pelajaran dari belum ada anak yang belum mengeri menjadi 8 dari 13 anak yang paham materi yang telah diajarkan. Pengabdian masyarakat ini diharapkan dapat meningkatkan pemahaman anak-anak tunagrahita dan membangun motivasi anak-anak tersebut untuk menatap masa depan dengan cerah.
A Hybrid Traditional and Machine Learning-Based Stacking-Based Ensemble Forecasting Approach for Coal Price Prediction Yaqin, Alvin Muhammad 'Ainul; Hamdi, Rafisal; Zamzani, Muhammad Imron; Hertadi, Christopher Davito Prabandewa; Nabiha, Hilwa Dwi Putri
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.30547

Abstract

Accurate coal price forecasts are crucial, as volatility in coal prices significantly impacts company performance and profitability. Traditional time series forecasting methods, such as exponential smoothing, are known for their simplicity and low data requirements. In contrast, machine learning techniques, such as random forest and neural network, offer higher accuracy in predictions. However, very few attempts have been made to combine the simplicity of traditional methods with the accuracy of machine learning techniques. This paper presents a novel stacking-based model that integrates both traditional statistical methods and machine learning techniques to enhance coal price predictions. Using Indonesian coal price data from January 2009 to October 2021, we trained the models on various combinations of predictors to generate new predictions. Our findings demonstrate that our stacking-based model outperforms other models, with RMSE and MAPE values of 6.44 and 5.97%, respectively. These results indicate that the model closely forecasts actual coal prices, capturing 94.03% of the price movements. The main contribution of this study is the application of stacking-based models to coal price forecasting in Indonesia, which has not been previously explored, thus enriching the literature on this topic.
Optimizing the Distribution and Allocation of COVID-19 Vaccines Using Mathematical Programming Approach: A Case Study in Indonesia Yaqin, Alvin Muhammad 'Ainul; Rosyid, Ghina Salsabila; Karim, Abdul Alimul; Sulaiman, Mochamad; Fadillah, Fitriah
IJIEM - Indonesian Journal of Industrial Engineering and Management Vol 6, No 1: February 2025
Publisher : Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijiem.v6i1.28013

Abstract

Effective distribution of COVID-19 vaccines is crucial for pandemic control. This study utilized a multi-product mixed-integer nonlinear programming (MINLP) model to optimize the distribution of five vaccine types across (AstraZeneca, Sinopharm, Moderna, Pfizer, and Sinovac). The population, segmented into five age groups (12-18 years, 19-30 years, 31-45 years, 46-59 years and over 60 years), accesses vaccines through 59 healthcare facilities in one of the large cities in Indonesia. With a budget of IDR 150 billion, the model procured five vaccine a total of 574,748 vaccine doses, distributed as follows: 112,954 of type 1, 115,733 of type 2, 115,649 of type 3, 112,171 of type 4, and 118,241 of type 5 vaccines. The model successfully optimized the distribution, achieving a delivery-to-demand ratio of 0.049, which reflects the proportion of vaccine demand met under various scenarios, particularly in scenario 4, which represents actual conditions. Decision-makers can further enhance vaccine allocation by adjusting the total budget; for instance, an additional IDR 10 billion would enable the distribution of 123,474 more doses, increasing the delivery-to-demand ratio to 0.056. This ratio of 0.056 was obtained by adjusting the total budget allocated for vaccine distribution in scenario 5, based on the results from AMPL and Gurobi software. A significant contribution of this study is the development of a MINLP model that ensures equitable distribution tailored to age-specific pandemic requirements. Validation using real-world data enhances the existing literature on vaccine distribution strategies. This study provides valuable insights for policymakers and managers aiming to optimize resource allocation and distribution strategies for COVID-19 vaccination programs, thereby improving overall pandemic management efficiency.