Claim Missing Document
Check
Articles

Found 3 Documents
Search

MESH CONVERGENCE TEST BY USING FINITE ELEMENT ANALYSIS (FEA) IN SHAFT LOADING OF 2 KW INDUCTION MOTOR Hotma, Lambert; Majid, Nur Cholis; Marsalyna; Hendrawan , Jekki; Kinasih, Nirma Afrisanti; Febriansyah, Dwi Jaya; Novariawan , Bayu; Alfin , Muhammad Reza; Putri, Intan Satwika; Ghufron, Hanif; Afif, Muhammad Thowil; Fadjrin, Budi Noviyantoro; Purnomo , Endra Dwi
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1516

Abstract

Finite Element Analysis (FEA) is a calculation tool to find out a determined solution for a complex structure subjected to some certain static load. To obtain the most valid solution from this analysis, one of the parameters needed is mesh convergence test. This paper discusses the mesh convergence test by using FEA in a 2-kW induction motor shaft where the motor is used in an electric motorcycle. FEA was carried out by using static structural module in ANSYS 14.5 software. The shaft was subjected to static load from rotor and pulley weight. These loads were supported by a pair of ball bearing. Furthermore, the shaft was meshed by using various sizes of mesh to find out the effects to mesh convergence. The applied mesh sizes were 3; 2,5; 2; 1,5; and 1 mm. These simulation results represented the value of deformation and stress on the shaft. The convergence test was depicted in a graph of elements number vs. deformation and elements number vs. Von – Mises stress. The maximum deformation was located around rotor seat, while the minimum one was around the rear bearing seat. On the other hand, maximum and minimum Von – Mises stress appeared around rear bearing seat. Overall, it can be concluded that the results of deformation and Von – Mises stress had reached convergence
MESH CONVERGENCE TEST BY USING FINITE ELEMENT ANALYSIS (FEA) IN SHAFT LOADING OF 2 KW INDUCTION MOTOR Hotma, Lambert; Majid, Nur Cholis; Marsalyna; Hendrawan , Jekki; Kinasih, Nirma Afrisanti; Febriansyah, Dwi Jaya; Novariawan , Bayu; Alfin , Muhammad Reza; Putri, Intan Satwika; Ghufron, Hanif; Afif, Muhammad Thowil; Fadjrin, Budi Noviyantoro; Purnomo , Endra Dwi
Jurnal Rekayasa Mesin Vol. 15 No. 3 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i3.1516

Abstract

Finite Element Analysis (FEA) is a calculation tool to find out a determined solution for a complex structure subjected to some certain static load. To obtain the most valid solution from this analysis, one of the parameters needed is mesh convergence test. This paper discusses the mesh convergence test by using FEA in a 2-kW induction motor shaft where the motor is used in an electric motorcycle. FEA was carried out by using static structural module in ANSYS 14.5 software. The shaft was subjected to static load from rotor and pulley weight. These loads were supported by a pair of ball bearing. Furthermore, the shaft was meshed by using various sizes of mesh to find out the effects to mesh convergence. The applied mesh sizes were 3; 2,5; 2; 1,5; and 1 mm. These simulation results represented the value of deformation and stress on the shaft. The convergence test was depicted in a graph of elements number vs. deformation and elements number vs. Von – Mises stress. The maximum deformation was located around rotor seat, while the minimum one was around the rear bearing seat. On the other hand, maximum and minimum Von – Mises stress appeared around rear bearing seat. Overall, it can be concluded that the results of deformation and Von – Mises stress had reached convergence
Performance materials with variations of tractor drive wheel fin angle and low-cost manufacturing analysis saraswati, Sherly octavia; Purnomo, Endra Dwi; Aziz, Amiruddin; Nandar, Cuk Supriyadi Ali; Utomo, Setyo Margo; Marsalyna, Marsalyna; Nugroho, Fandy Septian; Amelia, Lia; Mubarak, Achmad Ridho; Hotma, Lambert
Jurnal Polimesin Vol 22, No 3 (2024): June
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v22i3.4649

Abstract

Nowadays, the demand for workers in the agriculture industry has decreased and there is a need for rising mechanization in the agriculture process. The agriculture process that requires mechanization is cultivating. The rice cultivator has to be as light as possible, so requires a lighter material but is also strong enough. The correlation between the rice transplanter tool and the wheels is closely related to soil conditions. The selection of wheel materials is considered based on the characteristics of the planting area. In addition, another influence variable is the angle of the fin in the rice transplanter wheel. Material of rice transplanter wheel has been established, these are 1023 carbon steel sheet, AISI 1020 steel cold rolled, AISI 316 stainless steel. The angle of the fin was varied, these are 30, 35, and 40, this fin will give an effect on the traction result of rice transplanter wheel movement. The combination of lightweight material and the appropriate fin angle of the rice transplanter wheel has the best traction result. As a result of this research, the suitable material for the rice transplanter wheel was carbon steel and the fin’s angle was 30. This research involved a comparison and analysis of material strength under various fin angles. The evaluation of stress criteria was conducted using design values to determine the most reliable final product design. The paper contributes by illustrating how to represent the final decision on the combination of design and materials, incorporating a cost index assessment.