p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal jeti
Hasan Dalimunthe, Amir
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Unjuk Kerja Algoritma Support Vector Machine (SVM) dan Naïve Bayes Dalam Pengklasifikasian Berita Hoaks Pada Twitter Tentang Aksi Cepat Tanggap (ACT) Hasan Dalimunthe, Amir; Munirul Ula; Rini Meiyanti
Jurnal Elektronika dan Teknologi Informasi Vol 5 No 2 (2024): September 2024
Publisher : LPPM-UNIKI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5201/jet.v5i2.400

Abstract

Twitter merupakan satu dari banyaknya media sosial yang populer di kalangan masyarakat.  Terkadang informasi yang beredar di twitter merupakan berita palsu yang tidak dapat dibuktikan kebenarannya (hoaks). Penelitian ini menggunakan algoritma Naïve Bayes dan Support Vector Machine (SVM) untuk menentukan berita yang beredar di platfrom twitter mengenai Aksi Cepat Tanggap (ACT) termasuk ke dalam berita hoaks atau berita faktual. Proses klasifikasi dimulai dengan pengumpulan data dengan Teknik Scraping dan setelah itu dilakukan pelabelan untuk mengklasifikasi data latih. Data yang telah diberi label kemudian diproses melalui text pre-processing dan dilanjutkan dengan klasifikasi menggunakan metode Naïve Bayes dan Support Vector Machine (SVM). Jumlah data yang digunakan dalam penelitian ini sebanyak 1425 data dan dibagi ke dalam kategori fakta dan kategori hoaks. Pada proses klasifikasi algoritma Naïve Bayes mendapat nilai akurasi 66,76%, presisi 70,13%, dan recall 58,38%. Sedangkan hasil evaluasi klasifikasi Support Vector Machine (SVM) memiliki tingkat akurasi 65,22%, presisi 71,37%, dan recall 50,84%. Sehingga dapat disimpulkan performa algoritma Naïve Bayes memiliki performa yang lebih bagus dari algoritma Support Vector Machine.