Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERBANDINGAN K-MEDOIDS DAN CLARA (Clustering Large Application) PADA DATA POPULASI TERNAK DI INDONESIA Ardhani, Rizky; Marshelle, Sean; Fitrianto, Anwar; Erfiani, Erfiani; Jumansyah, L. M. Risman Dwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.764

Abstract

This study compares the K-Medoids and CLARA (Clustering Large Application) methods for livestock population data in Indonesian districts and cities. Calculating the distance between points and objects in the data, K-Medoids is a method for clustering based on data points (medoids). A larger dataset is divided into several samples for comparison in CLARA, an extension of the K-Medoids approach. The CLARA method analysis results show that three clusters are the ideal number. The ideal number of clusters in a K-Medoids cluster analysis is two. The Silhouette Score (SS), Davis-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI) are the metrics that are measured. The evaluation of the comparison results shows that the CLARA method has an SS value of 0.66, while K-Medoids has an SS value of 0.62. The comparison of the CLARA and K-Medoids approaches yielded DBI values of 1.38 and 1.92, respectively, and 197.54 and 132.73 for CHI. The findings indicate that, in comparison to the K-Medoids approach, the SS value for the CLARA method is closer to 1, and that the CHI value derived from the CLARA method is likewise greater. The K-Medoids approach has a higher DBI value than the CLARA method, where a lower DBI value denotes superior performance. The CLARA approach is the most effective way to do cluster analysis on livestock population data in Indonesian districts and cities, according to the findings.
ANALISIS KINERJA MODEL STACKING BERBASIS RANDOM FOREST DAN SVM DALAM KLASIFIKASI RUMAH TANGGA BERDASARKAN GARIS KEMISKINAN MAKANAN DI PROVINSI JAWA BARAT Ghiffary, Ghardapaty Ghaly; Amanda, Nabila Tri; Ardhani, Rizky; Sartono, Bagus; Firdawanti, Aulia Rizki
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.856

Abstract

The stacking method is an ensemble technique in machine learning that combines predictions from several base models to improve classification accuracy. This research applies the stacking method with two machine learning algorithms, namely Random Forest and Support Vector Machine (SVM) as base learners and logistic regression as a meta learner. This study aims to develop a classification model to identify households based on the food poverty line in West Java Province. The data used is KOR and household data in West Java Province sourced from the 2023 BPS National Socio-Economic Survey (Susenas). The variables used consisted of 24 independent variables with food poverty level as the response variable. Modeling was conducted using feature selection using Recursive Feature Elimination (RFE) and class imbalance handling using the ADASYN method. The results showed that the stacking model was superior to the single model with a balance accuracy of 0.81, sensitivity of 0.72, and specificity of 0.89. Feature importance analysis identified that calorie consumption, expenditure on cigarettes, meat and fruits, and expenditure on rice, eggs and other commodities contributed the most to the classification households based on the food poverty line in West Java Province.
Comparison of clustering analysis of K-means, K-medoids, and fuzzy C-means methods: case study of school accreditation in west java Hasnataeni, Yunia; Nurhambali, M Rizky; Ardhani, Rizky; Hafsah, Siti; Soleh, Agus M
Journal of Soft Computing Exploration Vol. 6 No. 2 (2025): June 2025
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v6i2.575

Abstract

This research aims to analyze school accreditation data in West Java using clustering methods: K-Means, K-Medoids, and Fuzzy C-Means, to identify patterns and groups of schools based on similar characteristics. K-Means, known for its simplicity, suggests an optimal two-cluster solution based on silhouette values but employs three clusters for detailed analysis. K-Medoids, noted for its robustness against outliers, achieves the best clustering with a lowest Davies-Bouldin Index (DBI) of 0.8 and the highest Silhouette Information (SI) value of 0.46. Fuzzy C-Means, which assigns membership degrees to each data point across clusters, performs reasonably well with a DBI of 0.87 and an SI value of 0.40, while K-Means shows the highest DBI of 0.9 and the lowest SI value of 0.39. The findings highlight K-Medoids as the superior method for clustering. Regions with lower educational quality, such as Bekasi and Cianjur regions, require priority interventions, whereas areas with better quality, like Bandung and Bekasi regions, can serve as models. Data-driven approaches, inter-regional collaboration, and continuous monitoring and evaluation are recommended to optimize educational policies and enhance overall educational quality in West Java.