Claim Missing Document
Check
Articles

Found 1 Documents
Search

Stacked Learning Anomaly Detection Scheme with Data Augmentation for Spatiotemporal Traffic Flow Binitie, Amaka Patience; Odiakaose , Christopher Chukwufunaya; Okpor, Margaret Dumebi; Ejeh, Patrick Ogholuwarami; Eboka, Andrew Okonji; Ojugo, Arnold Adimabua; Setiadi, De Rosal Ignatius Moses; Ako, Rita Erhovwo; Aghaunor, Tabitha Chukwudi; Geteloma, Victor Ochuko; Afotanwo, Anderson
Journal of Fuzzy Systems and Control Vol. 2 No. 3 (2024): Vol. 2, No. 3, 2024
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v2i3.267

Abstract

The digital revolution births transformation in many facets of today’s society. Its adoption in transportation to curb traffic congestion in major cities globally advances smart-city initiatives. Challenges of population growth, lack of datasets, and aging infrastructure have necessitated the need for traffic analytics. Studies have estimated an associated global annual loss of $583 billion to traffic congestion for 2023. This, caused fuel wastage, loss of time, and increased costs across congested areas. With the cost of building more road networks, cities must advance new ways to improve traffic flow via anomaly detection as an early warning in the flow pattern. Our study posits stacked learning with extreme gradient boost as a meta-learner to help address imbalanced datasets, yield faster model construction, and ensure improved performance via enhanced anomalous data detection.