Claim Missing Document
Check
Articles

Found 3 Documents
Search

Indonesian sentiment towards global economic recession in 2023 using optimized hyperparameters of support vector machine kernels Maarif, Dairatul; Aulia Hafizha, Adinda; Kurniawan, Andi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4948-4956

Abstract

The potential for the 2023 global recession has troubled people worldwide, particularly in light of the COVID-19 pandemic. This study employs a sentiment analysis approach to examine how the Indonesian internet community, particularly on Twitter, perceives the topics related to the global economic recession. We collected 11,017 uploaded tweets that were analyzed using support vector machine classifier with linear, radial basis function (RBF), sigmoid, and polynomial kernel schemes. Furthermore, we optimized the classifiers with C, Gamma, and degree hyperparameters. Empirical evidence indicates a lack of preparedness to face a global recession, evidenced by most responses towards 2023 global recession exhibiting concerns about high inflation and economic instability. The finding also suggests that the optimized RBF is a superior modeling kernel relative to others. Collectively, these results provide insights with significant implications for sentiment analysis, natural language processing, and the study of behavioural economics.
Indonesia-China Cooperation For The Development And Improvement of Digital Technology 4.0 in The Field of Security And Economy arianto, adirio; maarif, dairatul; muhadjir, m; argaditya, raynor
Global Komunika : Jurnal Ilmu Sosial dan Ilmu Politik Vol 5 No 2 (2022): Global Komunika
Publisher : FISIP UPNVJ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33822/gk.v5i2.5537

Abstract

Kerjasama industri 4.0 antara Indonesia-China di sektor keamanan dan ekonomi digital merupakan suatu hal yang penting bagi kedua negara. China memiliki jumlah pengguna internet terbesar di dunia, dilanjutkan dengan Indonesia yang berada di peringkat kelima. Bagi Indonesia, kerjasama ini dipandang mampu mengakselerasi pembangunan infrastruktur digital disektor keamanan dan ekonomi. Sedangkan bagi China, kerjasama ini dipandang mampu membuka peluang sekaligus memperluas pasar ekonomi teknologi digitalnya di luar negeri. Penelitian ini berusaha untuk mengelaborasi kerjasama antara Indonesia-China dalam upaya pengembangan industri teknologi digital 4.0 di sektor keamanan dan ekonomi digital. Adapun metode yang penulis gunakan adalah metode kualitatif dengan kerangka teori kerjasama bilateral. Penelitian ini menemukan hasil bahwasannya kerjasama yang dilakukan kedua belah pihak telah memberikan dampak positif terutama dalam upaya pengembangan dan peningkatan industri 4.0 baik di sektor keamanan maupun ekonomi digital.Katakunci: Industri 4.0, Ekonomi digital, Keamanan, Kerjasama bilateral
Deep Learning-Based Sentiment Analysis of Twitter Discourse on the Gaza and Ukraine Conflicts Using Bi-GRU Architecture Nathanael, Garcia Krisnando; Aldyan, Rizal Akbar; Hop, Tran Minh; Sianipar, Imelda Masni Juniaty; Maarif, Dairatul; Quddus, Zayyin Abdul
Journal of Government and Civil Society Vol 9, No 2 (2025): Journal of Government and Civil Society (October)
Publisher : Universitas Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/jgcs.v9i2.14288

Abstract

The proliferation of social media has transformed platforms like Twitter into dynamic arenas for expressing public sentiment during geopolitical crises. This study examines global public opinion on the Gaza and Ukraine conflicts by employing a deep learning-based sentiment analysis model utilizing a Bidirectional Gated Recurrent Unit (Bi-GRU) architecture. A total of 24,177 tweets were collected and pre-processed, followed by sentiment labeling using a hybrid lexical approach that combines VADER and TextBlob. Feature extraction was conducted using the TF-IDF method, and the Bi-GRU model was trained and evaluated using standard performance metrics. The model achieved an accuracy of 88.06% and an average F1-score of 85.07%, demonstrating superior performance in recognizing sentiment, especially for negative expressions. Word cloud analysis further revealed the dominance of emotionally charged terms such as "genocide" and "pray for Gaza," indicating the strong affective orientation of online discourse. The study confirms the efficacy of Bi-GRU in handling informal and contextually complex texts. It highlights the role of social media in articulating collective emotions and shaping public narratives during conflict. These findings offer methodological contributions to the field of natural language processing and practical implications for real-time crisis monitoring, policymaking, and humanitarian communication strategies.Proliferasi media sosial telah mengubah platform seperti Twitter menjadi arena dinamis untuk mengekspresikan sentimen publik selama krisis geopolitik. Studi ini meneliti opini publik global terhadap konflik Gaza dan Ukraina dengan menggunakan model analisis sentimen berbasis pembelajaran mendalam yang memanfaatkan arsitektur Bidirectional Gated Recurrent Unit (Bi-GRU). Sebanyak 24.177 tweet dikumpulkan dan diproses terlebih dahulu, kemudian diberi label sentimen menggunakan pendekatan leksikal hibrida yang menggabungkan VADER dan TextBlob. Ekstraksi fitur dilakukan menggunakan metode TF-IDF, dan model Bi-GRU dilatih serta dievaluasi menggunakan metrik kinerja standar. Model ini mencapai akurasi sebesar 88,06% dan rata-rata skor F1 sebesar 85,07%, menunjukkan performa unggul dalam mengenali sentimen, terutama untuk ekspresi negatif. Analisis word cloud lebih lanjut mengungkap dominasi istilah bermuatan emosional seperti “genocide” dan “pray for Gaza,” yang menunjukkan orientasi afektif yang kuat dalam wacana daring. Studi ini menegaskan efektivitas Bi-GRU dalam menangani teks informal dan kontekstual yang kompleks, serta menyoroti peran media sosial dalam mengartikulasikan emosi kolektif dan membentuk narasi publik selama konflik. Temuan ini memberikan kontribusi metodologis bagi bidang pemrosesan bahasa alami serta implikasi praktis bagi pemantauan krisis secara waktu nyata, pembuatan kebijakan, dan strategi komunikasi kemanusiaan