Claim Missing Document
Check
Articles

Found 2 Documents
Search

SISTEM INFORMASI ABSENSI MAGANG (KERJA PRAKTIK) PADA PERUMDA TIRTA MUSI PALEMBANG Dwi Putri Amanda; Fathiyah Nopriani
Jurnal Riset Sistem Informasi Vol. 1 No. 4 (2024): Oktober : Jurnal Riset Sistem Informasi
Publisher : CV. Denasya Smart Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69714/qmx1p526

Abstract

This research proposes the development of a digital-based Internship Attendance Information System. This system is designed to make it easier to manage internship participant attendance data effectively and efficiently. By using this information system, it is hoped that the entire attendance recording process can be carried out automatically, attendance data is stored safely, and attendance reports can be generated quickly and accurately. This research will use a system development method (System Development Life Cycle, SDLC) with a prototyping approach. The stages in this method include gathering requirements, building a prototype, evaluating the prototype by users, refining the prototype, and implementing the final system. The data used in this research was collected through interviews with Perumda Tirta Musi staff, field observations, and study of related documents. It is hoped that the final results of this research will produce an information system that can be implemented and help Perumda Tirta Musi in managing internship attendance better, with a focus on meeting user needs through continuous iteration and feedback.
IMPLEMENTASI AI-POWERED INTRUSION DETECTION SYSTEMS UNTUK MENDETEKSI ANCAMAN KEAMANAN PADA BIG DATA Dwi Putri Amanda; Eriene Dheanda Absharina
Simtek : jurnal sistem informasi dan teknik komputer Vol. 10 No. 1 (2025): April 2025
Publisher : STMIK Catur Sakti Kendari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51876/simtek.v10i1.1381

Abstract

Big Data menawarkan banyak manfaat, tetapi juga menimbulkan tantangan besar dalam keamanan, seperti ancaman siber yang semakin kompleks dan sulit terdeteksi. Sistem Deteksi Intrusi (Intrusion Detection System/IDS) tradisional sering kewalahan menangani volume data yang besar dan pergerakannya yang cepat. Penelitian ini mengusulkan penerapan IDS berbasis kecerdasan buatan (AI-powered IDS) untuk mendeteksi ancaman secara lebih efektif dan cepat. Sistem ini menggunakan algoritma machine learning untuk mengenali pola anomali dalam data dan mengurangi kesalahan deteksi (false positive). Hasil penelitian berdasarkan studi literatur menunjukkan bahwa AI-powered IDS meningkatkan akurasi deteksi dibandingkan dengan sistem tradisional. Dengan pendekatan ini, sistem keamanan Big Data dapat lebih siap menghadapi berbagai ancaman secara proaktif dan efisien.