Aziza, Asya Khaula
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi Kasus Kemampuan Abstraksi Matematis Siswa Kelas XI Pada Materi Fungsi Aziza, Asya Khaula; Imami, Adi Ihsan
Didactical Mathematics Vol. 7 No. 1 (2025): April 2025
Publisher : Program Studi Pendidikan Matematika, Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/dm.v7i1.11917

Abstract

Studi ini bertujuan untuk mengkaji kemampuan abstraksi matematis siswa pada materi fungsi. Studi kasus digunakan dalam penelitian ini, dengan kasus tunggal dan analisis ganda untuk mengidentifikasi faktor-faktor yang menyebabkan kemampuan abstraksi matematis siswa rendah. Kasus dalam penelitian ini adalah rendahnya kemampuan abstraksi siswa pada materi fungsi. 15 siswa di kelas XI di salah satu SMA Negeri di Kabupaten Karawang menjadi subjek penelitian. Dalam penelitian ini menggunakan instrumen tes terdiri dari lima soal dan instrumen non-tes berupa wawancara sederhana yang akan diberikan kepada subjek penelitian terpilih. Soal-soal ini mencakup indikator kemampuan abstraksi matematis. Subjek penelitian diberi lima soal uraian dinilai dan dikaji untuk mengevaluasi tingkat abstraksi siswa. Untuk mengumpulkan informasi tentang tingkat abstraksi siswa, wawancara tidak terstruktur digunakan sebagai komponen integral dari proses pengumpulan data. Hasil penelitian menunjukkan bahwa cara siswa melihat materi matematika yang sulit, membayangkan, memanipulasi objek, dan menghubungkan konsep ke dalam fungsi adalah faktor yang memengaruhi tingkat abstraksi mereka. Sehingga kemampuan abstraksi matematis siswa pada materi fungsi masih tergolong rendah. Selain itu, diperoleh bahwa rendahnya kemampuan abstraksi matematis siswa tergolong rendah disebabkan adanya kesulitan belajar yang dialami siswa dalam menyelesaikan soal di 3 indikator kemampuan abstraksi matematis.
Analyzing Structural Gaps in Mathematical Argumentation: A Toulmin-Based Study on Graph Theory Zulkarnaen, Rafiq; Aziza, Asya Khaula
Jurnal Pendidikan MIPA Vol 26, No 4 (2025): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jpmipa.v26i4.pp2613-2636

Abstract

This research project sought to explain the format and quality of students' mathematical argumentation in graph theory by examining how students built and defended arguments using the Toulmin model. Although research on mathematical argumentation has been extensive, studies that explicitly examine the structure of students' argumentation in graph theory are still very limited, especially in the context of Discrete Mathematics courses in Indonesian higher education. The qualitative descriptive design has been used to investigate students' written responses to graph theory problems in a Discrete Mathematics course. The sample consisted of 22 undergraduate students from the Mathematics Education Study Program at Universitas Singaperbangsa Karawang, selected purposively and classified into high-, medium-, and low-ability groups. Inductive and deductive analysis methods were applied to the data to identify patterns in the reasoning and to assess whether the students' arguments were complete and logically consistent. Data analysis was conducted by combining inductive and deductive approaches supported by a Toulmin model-based coding framework to identify the structure and completeness of arguments, particularly the presence and thickness of claims, data, and warrants, and to compare patterns across levels of ability. The findings showed clear differences in mathematical argumentation across ability levels. Students with high ability presented more coherent arguments with correct and justified claims and logical warrants, whereas medium- and low-ability students produced incomplete or no arguments. The results of this study suggest that ways to enhance the reasoning and argumentation of mathematics instruction, especially by using tasks that encourage justification and conceptual learning in discrete mathematics, need to be reinforced.   Keywords: mathematical argumentation, reasoning, Toulmin’s model, graph theory, discrete mathematics, mathematics education.