Online transportation applications such as Maxim are increasingly used due to the convenience they offer in ordering services. As usage increases, the number of user reviews also grows, serving as a valuable source of information for evaluating customer satisfaction and service quality. Sentiment analysis of these reviews can help companies understand user perceptions and improve service quality. This study aims to analyze the sentiment of user reviews on the Maxim application using the BERT-Base Multilingual Uncased model. BERT was chosen for its ability to understand sentence context bidirectionally, and it has proven to outperform traditional models such as MultinomialNB and SVM in previous studies, with an accuracy of 75.6%. The dataset used consists of 10,000 user reviews with an imbalanced distribution: 4,000 negative, 2,000 neutral, and 4,000 positive reviews. The data was split into 90% training data (9,000 reviews) and 10% test data (1,000 reviews). From the 9,000 training data, 15% or 1,350 reviews were allocated as validation data, resulting in a final training set of 7,650 reviews. Evaluation results show that BERT is capable of classifying sentiment into three categories positive, neutral, and negative, with an accuracy of 94.7%. The highest F1-score was achieved in the positive class (0.9621), followed by the neutral class (0.9412), and the negative class (0.9246). The confusion matrix shows that most predictions match the actual labels. These findings indicate that BERT is an effective and reliable model for performing sentiment analysis on user reviews of online transportation applications such as Maxim.