Claim Missing Document
Check
Articles

Found 1 Documents
Search

KLASIFIKASI PECAHAN UANG KERTAS RUPIAH MENGGUNAKAN TRANSFER LEARNING DENGAN MODEL MOBILENETV2 Rissa Ilmia Agustin; Jamaludin Indra; Sutan Faisal; Ahmad Fauzi; Rija Nur Hijriyya
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 9 No 2 (2024): OCTOBER
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/instek.v9i2.49123

Abstract

Memanfaatkan mesin sebagai perantara dalam proses pembelian dan penjualan adalah bagaimana teknologi otomasi diterapkan. Mesin berfungsi sebagai penjual dan memiliki kemampuan seperti otak, seperti kecepatan dan keakuratan dalam membaca dan mengidentifikasi nominal uang. Dengan menggunakan teknologi otomatis ini, transaksi jual beli menjadi lebih nyaman. Metode Convolutional Neural Network (CNN) merupakan salah satu komponen dari teknologi Deep Transfer Learning digunakan dalam penelitian ini untuk mengenali uang kertas rupiah. Selain itu, penelitian ini memilih arsitektur model MobileNetV2 yang sesuai dan memodifikasi laju pembelajaran keduanya berdampak pada kinerja model klasifikasi. Untuk menjamin bahwa model memiliki kesempatan yang memadai untuk belajar dari data pelatihan, jumlah epoch yang ideal juga diperhitungkan. Selain itu, hal ini dapat berdampak pada pencapaian kinerja tinggi dengan waktu komputasi yang efisien, pemanfaatan ukuran batch yang optimal juga diselidiki. Evaluasi kinerja model selama pelatihan memberikan hasil sebagai berikut : f1-score 98% recall 98%, presisi 98%, dan akurasi pada set pengujian 97.86%.