Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Informasi Deteksi Penyakit Pada Tanaman Padi (Brown Spot, Hispa, Leaf Blast) Menggunakan Metode Convolutional Neural Network (CNN) Rachman, Yusuf Fadlila; Susanti, Pratiwi; Putra, Affriza Brilyan Relo Pambudi Agus; Rahmawati, Nuriya Imroatu
Decode: Jurnal Pendidikan Teknologi Informasi Vol. 4 No. 3: NOVEMBER 2024
Publisher : Program Studi Pendidikan Teknologi Infromasi UMK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51454/decode.v4i3.846

Abstract

Sebagai salah satu produsen padi terbesar di dunia, sering menghadapi penurunan produksi akibat serangan penyakit padi. Pendeteksian penyakit secara manual kurang efektif karena keterbatasan pengetahuan petani. Solusi yang ditawarkan untuk mengatasi masalah ini adalah untuk mengembangkan sistem informasi berbasis kecerdasan buatan yang mampu mendeteksi secara otomatis penyakit pada tanaman padi, termasuk Brown Spot, Hispa, dan Leaf Blast, dengan menggunakan metode Convolutional Neural Network (CNN). Sistem ini diharapkan dapat membantu petani dalam melakukan deteksi dini terhadap penyakit padi, sehingga meningkatkan efisiensi dan kualitas produksi pertanian. Sistemmengolah data gambar padi dan mendeteksi kondisi kesehatannya, termasuk mendeteksi padi sehat serta penyakit Brown Spot, Hispa, dan Leaf Blast. Penelitian ini menggunakan 3.355 dataset yang dibagi menjadi 335 untuk proses training, 335 untuk testing, dan 2.685 untuk validasi. Metode yang digunakan pada pengembangan system menerapkan pendekatan pengembangan perangkat lunak Waterfall, yang mencakup analisis kebutuhan, desain sistem, implementasi, pengujian, dan pemeliharaan system. Sistem "Paddy-AI" yang dikembangkan mampu mencapai akurasi 85% dalam mendeteksi gambar.