Muhammad Reefy Hidayatullah
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PERBANDINGAN METODE REGRESI LINEAR DAN K-NEAREST NEIGHBOR (KNN) DALAM MEMPREDIKSI PRODUKSI TANAMAN PADI DI PULAU SUMATERA Muhammad Reefy Hidayatullah
Data Sciences Indonesia (DSI) Vol. 4 No. 2 (2024): Article Research Volume 4 Issue 2, December 2024
Publisher : ITScience (Information Technology and Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/dsi.v4i2.5201

Abstract

Padi merupakan bahan pangan yang sangat penting untuk menunjang kebutuhan pangan di Indonesia, khususnya di Pulau Sumatera. Faktor-faktor yang memengaruhi produksi padi meliputi luas panen, kelembapan, curah hujan, dan suhu rata-rata. Setiap tahun, suhu bumi yang terus meningkat akibat pemanasan global berdampak pada iklim yang fluktuatif, sehingga dapat menghambat produksi padi. Memahami faktor-faktor tersebut menjadi penting untuk pengembangan strategi yang efektif dalam meningkatkan produktivitas padi. Penelitian ini menggunakan bahasa pemrograman Python pada Google Colab untuk membandingkan metode regresi linear berganda dan K-Nearest Neighbors (KNN) dalam memprediksi produksi padi di Pulau Sumatera. Hasil penelitian menunjukkan bahwa metode regresi linear lebih akurat dibandingkan KNN, dengan nilai R² regresi linear sebesar 0,868181, lebih unggul 18,94% dibanding KNN. Selain itu, regresi linear memiliki nilai MAE yang lebih rendah sebesar 22,03% dan nilai MSE yang lebih rendah sebesar 55,49% dibanding KNN. Hasil ini menunjukkan bahwa regresi linear lebih andal dalam memprediksi produksi padi di Pulau Sumatera dan dapat digunakan sebagai alat bantu dalam pengambilan keputusan strategis di sektor pertanian.
Perbandingan Metode Regresi Linear Dan K-Nearest Neighbor (KNN) Dalam Memprediksi Produksi Tanaman Padi Di Pulau Sumatera Mustaqim, Kiki; Riza, Noviana; , Yusuf; Muhammad Reefy Hidayatullah
Data Sciences Indonesia (DSI) Vol. 4 No. 2 (2024): Article Research Volume 4 Issue 2, December 2024
Publisher : Yayasan Cita Cendikiawan Al Kharizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/dsi.v4i2.5201

Abstract

Padi merupakan bahan pangan yang sangat penting untuk menunjang kebutuhan pangan di Indonesia, khususnya di Pulau Sumatera. Faktor-faktor yang memengaruhi produksi padi meliputi luas panen, kelembapan, curah hujan, dan suhu rata-rata. Setiap tahun, suhu bumi yang terus meningkat akibat pemanasan global berdampak pada iklim yang fluktuatif, sehingga dapat menghambat produksi padi. Memahami faktor-faktor tersebut menjadi penting untuk pengembangan strategi yang efektif dalam meningkatkan produktivitas padi. Penelitian ini menggunakan bahasa pemrograman Python pada Google Colab untuk membandingkan metode regresi linear berganda dan K-Nearest Neighbors (KNN) dalam memprediksi produksi padi di Pulau Sumatera. Hasil penelitian menunjukkan bahwa metode regresi linear lebih akurat dibandingkan KNN, dengan nilai R² regresi linear sebesar 0,868181, lebih unggul 18,94% dibanding KNN. Selain itu, regresi linear memiliki nilai MAE yang lebih rendah sebesar 22,03% dan nilai MSE yang lebih rendah sebesar 55,49% dibanding KNN. Hasil ini menunjukkan bahwa regresi linear lebih andal dalam memprediksi produksi padi di Pulau Sumatera dan dapat digunakan sebagai alat bantu dalam pengambilan keputusan strategis di sektor pertanian.