Claim Missing Document
Check
Articles

Found 3 Documents
Search

Clustering Time Series Forecasting Model for Grouping Provinces in Indonesia Based on Granulated Sugar Prices Amatullah, Fida Fariha; Ilmani, Erdanisa Aghnia; Fitrianto, Anwar; Erfiani, Erfiani; Jumansyah, L. M. Risman Dwi
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8840

Abstract

Clustering time series is the process of organizing data into groups based on similarities in specific patterns. This research uses the prices of granulated sugar in each province of Indonesia. According to USDA reports, sugar consumption in Indonesia in 2023 reached 7.9 million tons. On April 26, 2024, the price of granulated sugar peaked in the Papua Mountains at Rp29,320 per kg, while the lowest price was recorded in the Riau Islands at Rp16,460 per kg. The research aims to cluster provinces based on the characteristics of granulated sugar prices and to use forecasting models for each group. Two groups were formed based on the price patterns of granulated sugar over time. The provinces of Papua and West Papua are in group 2, while the other 30 provinces are in group 1. The best model developed using the auto ARIMA method is ARIMA (2, 1, 0), with a MAPE value of 2.36% for cluster 1, and ARIMA (1, 1, 1), with a MAPE value of 2.59% for cluster 2. These values are less than 10%, indicating that the models built using the auto ARIMA method for clusters 1 and 2 are suitable for forecasting.
THE PERFOMANCE OF THE ARIMAX MODEL ON COOKING OIL PRICE DATA IN INDONESIA Ilmani, Erdanisa Aghnia; Amatullah, Fida Fariha; Notodiputro, Khairil Anwar; Angraini, Yenni; Mualifah, Laily Nissa Atul
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp819-828

Abstract

Forecasting is crucial for planning, particularly in addressing potential issues. While ARIMA models are commonly used for time series forecasting, they may need more accuracy by overlooking external factors. The ARIMAX model, which incorporates exogenous variables, is employed to enhance accuracy. This study applies the ARIMAX model to forecast cooking oil prices in Indonesia, known for its complex patterns. Using data from the Directorate General of Domestic Trade and Price Stability (2024), the research highlights fluctuating cooking oil prices from 2010 to 2023 every month. Both ARIMA and ARIMAX models are utilized, with domestic fresh fruit bunch (FFB) prices and the COVID-19 pandemic indicator as exogenous variables. Evaluation based on Mean Absolute Percentage Error (MAPE) shows that the ARIMAX model has a MAPE of 17.31%, compared to 17.69% for the ARIMA model. The lower MAPE value for ARIMAX indicates improved forecasting accuracy by incorporating external factors. Thus, the ARIMAX model is recommended for predicting cooking oil prices, offering better accuracy and valuable insights for policymakers and stakeholders.
Studi Komparatif Metode Boosting Dalam Pengklasifikasian Penerima Bantuan Program Keluarga Harapan (PKH) Amatullah, Fida Fariha; MY, Hadyanti Utami; Rizqi, Tasya Anisah; Wahyuni, Silvia Tri; Sartono, Bagus; Firdawanti, Aulia Rizki
TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol Vol 11, No 3 (2025): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v11n3.315-326

Abstract

Ensemble Learning adalah paradigma pembelajaran mesin dimana beberapa model (biasanya disebut "weak learners") dilatih untuk memecahkan masalah yang sama dan digabungkan untuk mendapatkan hasil yang lebih baik. Salah satu model Ensemble, yaitu model boosting. Beberapa metode boosting yang digunakan dalam penelitian ini, yaitu Gradient Boosting Machines (GBM), Extreme Gradient Boosting Machine (XGBM), Light Gradient Boosting Machine (LGBM), dan CatBoost. Penelitian ini akan mengklasifikasikan Rumah Tangga (RT) yang menerima bantuan Program Keluarga Harapan (PKH). Pengklasifikasian PKH sangat penting dilakukan, karena saat ini pemberian PKH belum optimal dan masih banyak yang tidak tepat sasaran. Hasil penelitian menunjukkan bahwa metode LGBM menunjukkan performa terbaik ketika jumlah data latih berukuran besar, yaitu 90% dengan akurasi sebesar 67,97%, sedangkan untuk data latih kecil yaitu 60:40, LGBM memiliki performa yang kurang baik, dengan nilai balanced accuracy terendah dibandingkan metode boosting lainnya, yaitu sebesar 54,43%. Keunggulan LGBM ini disebabkan karena kemampuannya dalam mengelola data besar dan kompleks yang sesuai dengan karakteristik data sosial ekonomi rumah tangga penerima PKH. Dua fitur yang memiliki peran penting untuk pengklasifikasian PKH dalam model terbaik yaitu LGBM adalah faktor ekonomi dan jumlah anggota rumah tangga. Ensemble Learning is a machine learning paradigm in which multiple models (commonly referred to as "weak learners") are trained to solve the same problem and combined to achieve better results. One of the Ensemble models is the boosting model. Several boosting methods used in this study include Gradient Boosting Machines (GBM), Extreme Gradient Boosting Machine (XGBM), Light Gradient Boosting Machine (LGBM), and CatBoost. This study aims to classify households (RT) that receive assistance from the Program Keluarga Harapan (PKH). The classification of PKH recipients is crucial because the distribution of PKH aid has not been optimal, with many cases of misallocation. The results of the study indicate that the LGBM method demonstrates the best performance when the latih dataset is large (90%), achieving an accuracy of 67.97%. However, when the latih dataset is small (60:40), LGBM performs poorly, recording the lowest balanced accuracy among the boosting methods, at 54.43%. The superiority of LGBM is attributed to its ability to handle large and complex data, which aligns with the socio-economic characteristics of PKH recipient households. Two key features that play a significant role in PKH classification using the best-performing model, LGBM, are economic factors and the number of household members.