Claim Missing Document
Check
Articles

Found 3 Documents
Search

Automatic Plant Disease Classification with Unknown Class Rejection using Siamese Networks Putra, Rizal Kusuma; Alfarisy, Gusti Ahmad Fanshuri; Nugraha, Faizal Widya; Nuryono, Aninditya Anggari
Buletin Ilmiah Sarjana Teknik Elektro Vol. 6 No. 3 (2024): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v6i3.11619

Abstract

Potatoes are one of the horticultural commodities with significant trade value both domestically and internationally. To produce high-quality potatoes, healthy and disease-free potato plants are essential. The most common diseases affecting potato plants are late blight and early blight. These diseases appear randomly in different positions and sizes on potato leaves, resulting in numerous combinations of infected leaves. This study proposes an architecture focused on a similarity-based approach, namely the Siamese Neural Network (SNN). SNN can recognize images by comparing two or more images and categorizing the test image accordingly. Thus, SNN has an advantage over classification-based approaches as it can identify various combinations of disease spots on potato plants using a similarity-based approach. This study is divided into two main scenarios: testing with data categories which were previously seen during the training process (traditional testing) and testing with the addition of new data categories that were not seen during training. In the first scenario, SNN showed better accuracy with an accuracy rate of 98.4%, while in the second scenario, SNN achieved an accuracy of 97.1%. That result suggests that SNN can categorize data very well, even recognizing data which never seen during training. These results offer hope that SNN can recognize more disease spots/patterns on potato plants or even identify new diseases by adding these new diseases to the SNN support set without retraining.
Topic Modelling of Disaster Based on Indonesia Tweet Using Latent Dirichlet Allocation Nuryono, Aninditya Anggari; Iswanto, Iswanto; Ma'arif, Alfian; Putra, Rizal Kusuma; Nugroho H, Yabes Dwi; Hakim, Muhammad Iman Nur
Signal and Image Processing Letters Vol 7, No 1 (2025)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v7i1.132

Abstract

Twitter (now X) is a critical social media platform for disseminating information during crises. This study models disaster-related topics from Indonesian-language tweets using Latent Dirichlet Allocation (LDA). From a dataset of 8,718 tweets collected from official sources like BMKG and BNPB, we performed several preprocessing steps, including case folding, stop word removal, stemming, and normalization of slang and abbreviations. The optimal number of topics was determined using coherence scores, with the model achieving a peak coherence value of approximately 0.57. Keywords such as “banjir”, “kecelakaan”, “tanah longsor,” and others were used to collect data from Twitter accounts like "BMKG" (Meteorology, Climatology, and Geophysical Agency) and "BNPB" (National Disaster Management Agency). The results revealed that the most frequently discussed topics with high coherence values were “angin topan” “topan”, “virus corona”, “kecelakaan”, “tenggelam”, “badai”, “angin puting.” A word cloud was used to visualize these disaster-related topics.
Penerapan Pengembangan Ekonomi Lokal (LED) Melalui Integrasi Akuakultur dan Hidroponik dengan Sistem Aquaponik Ramah Lingkungan di Panti Asuhan Putri ‘Aisyiyah Balikpapan Saputra, Riza Hadi; Putra, Rizal Kusuma; Nuryono, Aninditya Anggari; Mujizaturachman, Mujizaturachman; Rahman, Alvin Nur; Septiana, Mustika; Pandya, Felita Tsany
Jurnal Pengabdian Masyarakat Indonesia Vol 4 No 6 (2024): JPMI - Desember 2024
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpmi.3249

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan kesejahteraan ekonomi dan kualitas pendidikan anak-anak di Panti Asuhan Putri 'Aisyiyah Balikpapan melalui penerapan sistem Local Economic Development (LED). Fokus utama kegiatan adalah integrasi antara akuakultur dan hidroponik berbasis aquaponic eco-friendly sebagai solusi berkelanjutan untuk memenuhi kebutuhan pangan serta menciptakan peluang ekonomi yang mandiri. Di sektor pendidikan, tim memberikan pendampingan dalam pembelajaran mata pelajaran seperti Matematika, Bahasa Inggris, Kimia, dan Kewarganegaraan. Pendampingan ini meliputi pengajaran langsung, bantuan dalam menyelesaikan tugas sekolah, serta sesi permainan edukatif untuk meningkatkan keterampilan dan kepercayaan diri anak-anak. Di bidang ekonomi, instalasi kolam ikan lele dan sistem hidroponik berbasis ember berhasil diimplementasikan, disertai dengan pelatihan pemeliharaan dan panen. Aktivitas ini bertujuan untuk menciptakan keberlanjutan ekonomi melalui budidaya ikan dan tanaman yang dapat dimanfaatkan secara langsung oleh panti. Hasil kegiatan menunjukkan peningkatan signifikan dalam keterampilan belajar anak-anak serta kesiapan pihak panti dalam mengelola akuaponik secara mandiri. Kendala yang dihadapi meliputi keterbatasan keterbukaan dari anak-anak dalam sesi pengajaran, serta penyesuaian jadwal antara tim pelaksana dan pihak panti. Rencana ke depan mencakup peningkatan skala produksi ikan lele serta diversifikasi tanaman hidroponik untuk memperluas dampak ekonomi kegiatan.